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Abstract: Photovoltaic (PV) systems are increasingly relied upon to power wide daily 

applications, especially since they are considered a clean and sustainable source of elec-

tricity generation. Moreover, they are considered a savior for remote areas that lack elec-

tricity grids. Despite their advantages, this system faces several challenges during opera-

tion, so it requires using various optimization algorithms to achieve optimal utilization 

and obtain the highest possible PV output power. One of the most serious challenges 

facing the PV system is operating under Irregular Shading Conditions (ISC). It signifi-

cantly decreases the PV output power level. It also causes a complication in the shape of 

the PV power-voltage (P–V) curve, forming one Global Maximum Power (GMP) level 

among several Local ones. This study presents a comprehensive comparative evaluation 

of three modified control strategies to achieve the optimal controller selection for optimal 

PV system operation. These modified strategies are the Modified Cuckoo Search Algo-

rithm (MCSA), the Modified Grey Wolf Optimizer (MGWO), and the Modified Particle 

Swarm Optimization (MPSO). They were studied and analyzed under irregular shading 

scenarios with gradually increasing complexity of the P–V curve for the PV system. The 

results reveal that all three modified algorithms outperform their conventional counter-

parts. A critical analysis was also provided to guide the most effective strategy for con-

trolling PV systems in various applications, contributing to better decision-making dur-

ing the design process to obtain maximum efficiency. By comparing the performance of 

the modified strategies, we concluded that MGWO is optimal at controlling PV system 

performance under various ambient conditions. It boasts the highest output efficiency 

and fastest tracking response.  Furthermore, efficiency testing was conducted on a PV 

water pumping system that relies on an induction motor to drive the pump to confirm 

operational efficiency and provide final recommendations. 
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1. Introduction 

The escalating global energy demand and the gradual exhaustion of fossil fuel reserves have underscored 

the urgent need to transition toward sustainable energy alternatives. Solar energy stands out among the various 

renewable sources due to its abundance, environmental compatibility, and long-term viability. In this context, 

photovoltaic (PV) systems have gained considerable attention as an effective means of harnessing solar radia-

tion for electricity generation. While the upfront investment in PV technology can be substantial, these systems 

are characterized by durability, low operational costs, and broad geographic applicability. However, the per-

formance of PV systems is highly dependent on environmental conditions, exhibiting irregular behavior in re-
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sponse to fluctuations in solar irradiance and temperature. These variations become especially problematic in 

ISC, which can significantly diminish energy output. To mitigate these effects and maximize efficiency, sophis-

ticated Maximum Power Point Tracking (MPPT) techniques are essential. With ongoing advancements in this 

field, solar energy continues to solidify its position as a reliable and sustainable alternative to traditional energy 

sources [1]. 

The efficiency of a PV system is primarily influenced by solar irradiance and ambient temperature, with 

optimal performance typically achieved at an irradiance level of approximately 1000 W/m² and a temperature 

of around 25°C [2]. The behavior of a PV system is commonly described by the PV output power-against-PV 

output voltage (P–V) curve, which under Regular Sun Irradiance (RSI) conditions exhibits a single Maximum 

Power Point (MPP). However, under ISC, the P–V curve becomes wavy and features multiple Local Maximum 

Power Peaks (LMPP), complicating the task of locating the Global Maximum Power Peak (GMPP) [3]. 

The DC-DC boost converter is a critical component in photovoltaic (PV) systems, responsible for adjusting 

the operating voltage of the PV modules to correspond to the maximum available output power. It operates by 

regulating the duty cycle, which defines the ratio of the switch’s on-time to the total switching period. This ra-

tio, expressed as a percentage or decimal, plays a key role in determining the Maximum Power Point (MPP) [4]. 

Traditional MPPT controllers such as the Modified Incremental Conductance (MIC) and Modified Perturb 

and Observe (MP&O) have introduced improvements over their classical counterparts; however, they still face 

significant limitations in accurately tracking the Global Maximum Power Point (GMPP), particularly under 

Irregular Shading Conditions. These algorithms often suffer from premature convergence to local maxima due 

to the multi-peak nature of the power–voltage (P–V) curve, resulting in suboptimal energy extraction and re-

duced overall system efficiency [5]. 

To address these challenges, recent research has increasingly shifted towards advanced and hybrid MPPT 

techniques that integrate artificial intelligence (AI) with traditional control strategies. These hybrid approaches 

aim to enhance tracking accuracy, convergence speed, and adaptability by combining the global search capa-

bility of AI-based algorithms with the simplicity and reliability of classical methods. A common hybridization 

strategy involves coupling metaheuristic optimization algorithms such as Particle Swarm Optimization (PSO), 

Genetic Algorithm (GA), Grey Wolf Optimizer (GWO), and Cuckoo Search Algorithm (CSA) with conventional 

MPPT techniques like Perturb and Observe (P&O) or Incremental Conductance (IC) [6-7]. For instance, PSO–

P&O hybrids utilize PSO’s exploratory strength to locate a near-optimal region, followed by P&O-based re-

finement to achieve faster convergence with reduced risk of local entrapment [8]. 

In addition, intelligent control paradigms such as neuro-fuzzy systems, which fuse Artificial Neural Net-

works (ANN) and Fuzzy Logic Controllers (FLC), have been proposed to tackle the nonlinear and uncertain 

behavior of PV systems. These approaches benefit from ANN’s adaptive learning capabilities and FLC’s 

rule-based reasoning, offering a self-tuning MPPT mechanism that performs reliably under dynamic environ-

mental variations [9]. 

Moreover, ensemble-based hybrid techniques have been explored, wherein multiple optimization algo-

rithms such as GA, PSO, Artificial Bee Colony (ABC) operate in parallel, and their outcomes are intelligently 

fused to determine the most suitable operating point. These methods enhance the robustness of the MPPT 

process, particularly under fast-varying irradiance or complex shading profiles. Despite their evident ad-

vantages in improving energy yield, such techniques introduce new challenges, including increased computa-

tional complexity, higher implementation costs, and the generation of transient power oscillations during the 

search process. These oscillations can prolong system stabilization time and potentially reduce tracking effi-

ciency [10]. 

Consequently, ongoing research focuses on optimizing the trade-off between algorithmic sophistication 

and practical feasibility, with particular emphasis on reducing transient, enabling real-time embedded imple-

mentation, and ensuring consistent performance across diverse and uncertain operating conditions. 

Ehab et al. added an effective technique to classical versions of CSA, GWO, and PSO by studying a detailed 

analysis of the P-V curve behaviors under the ISC. It enabled the prelimiting of algorithmic search spaces by 

banning voltage regions that do not contribute to maximum power output. Consequently, the modified ver-

sions are namely the Modified Particle Swarm Optimization (MPSO) [11], the Modified Grey Wolf Optimiza-
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tion (MGWO) [12], and the Modified Cuckoo Search Algorithm (MCSA) [13]. Its targeted approach enhances 

algorithm efficiency by reducing transient oscillations and accelerating convergence speed.  

This study presents a comparative analysis of the classical and modified versions of these algorithms, 

aiming to determine the most effective method for practical implementation. The algorithms have also been 

validated using a real-world case study involving a PV-powered water pumping system. 

2. Materials and Methods 

This section determines the simulation modeling and controlling of the solar PV system. It includes the PV 

module performance under RSI and its performance under ISC. It also discusses the PV System design, which 

includes the system controller (Max Power Point Tracking). This controller is estimated by different controller 

strategies based on classical and modified versions. A brief overview of each optimization algorithm will be 

provided to highlight their operational mechanisms and enhancements. 

The modified Maximum Power Point Tracking (MPPT) algorithm iteratively refines the exploration area 

boundaries to enhance the performance of the presented algorithms. Initially, five evenly spread duty cycle 

samples are taken to cover the entire power-voltage (P-V) curve. The corresponding duty cycle, voltage, and 

power values for these samples are then stored in a matrix, sorted in descending order based on their operating 

voltage values for each iteration. The middle voltage value within this matrix is identified as a reference point, 

and its corresponding power value is considered the reference power for the current iteration. This reference 

power effectively divides the exploration area into two asymmetrical regions. The boundaries of each region are 

progressively narrowed towards the optimal solution in subsequent iterations, determined by the relationship 

between the reference power and other power values. When the reference power is the highest, the probability 

of finding the Global Maximum Power Point (GMPP) around that region increases, allowing the algorithm to 

disregard fewer probable areas and set new exploration limits. These improvements are derived from a com-

prehensive analysis of various P-V curve shapes under partial shading, which allows the algorithm to quickly 

establish new search boundaries at the end of each iteration, ensuring rapid convergence to the GMPP. 

During the execution of the proposed algorithm, the two highest power values along with their corre-

sponding duty cycles, denoted as D (     ) and D (     ), are retained. This strategy enhances the algorithm’s 

effectiveness by preserving the regions of the search space that are more likely to contain the global optimum, 

thereby avoiding premature exclusion of promising areas. In each iteration, the algorithm updates the outside 

duty cycle sample with a new duty cycle value. This new value is positioned midway between the duty cycles 

corresponding to the two highest power points and is computed using the following equation. 

       (     )   
 (     )   (     )

 
                                   (i) 

2.1. The Simulation Modeling of the Solar PV Module 

Using the MATLAB / Simulink program helps in conducting simulations with accurate results for the PV 

system and its operation. It plays an effective role and allows us to change the density of the sun's irradiation 

falling on the PV panels, modify the temperatures, and plot the output of the PV system. Consequently, it helps 

in studying the PV system behaviors for designing a suitable controller for its performance [14]. 

2.1.1. PV under Regular Sun Irradiance (RSI) 

The non-linear PV power versus voltage (P-V) curve illustrates all the operating points available for the PV 

system, ranging from zero voltage, which represents the short circuit condition, to the open circuit state, which 

contains the highest voltage value at which the PV system can be operated. Among these points, one operating 

point lets the PV system extract the maximum available power value. On the other hand, the shape of the PV 

current versus voltage (I-V) curve begins with the highest current value (short circuit case) and ends with a 

current value equal to zero (open circuit case), as shown in Figure 1 (a) [15]. 

2.1.2. PV under Irregular Shading Conditions (ISC) 

An irregularly shaded PV panel can be represented as comprising two groups of PV modules connected in 

series to form a PV string. Each group is paralleled by a bypass diode and subjected to varying levels of solar 

irradiance. Under conditions of irregular shading, the shaded cells absorb a portion of the electrical power 
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generated by the unshaded cells, effectively acting as electrical loads. This absorbed energy is dissipated as 

heat, which can result in the formation of hotspots that may ultimately damage the shaded cells [16]. 

To mitigate this issue, bypass diodes with opposite polarity are connected in parallel with each cell group. 

Under RSI conditions, these diodes remain in an open-circuit state. However, under irregular shading, they 

become forward bias and operate as short circuits, allowing the current from unshaded cells to bypass the 

shaded ones and thereby preventing damage. While this bypass mechanism protects the PV module, it also 

modifies the power output characteristics by introducing multiple local maxima in the power–voltage (P–V) 

curve as shown in Figure 1 (b) [17]. 

  

(a) (b) 

Figure 1. The Characteristics of PV Output Power against both the PV Output Voltage and PV Output Current (a) under Regular 

Sun Irradiance (RSI), (b) under Irregular Shading Conditions (ISC). 

2.2. The Solar PV System Controller 

The Maximum Power Point Tracking (MPPT) controller for the PV system aims to achieve continuous op-

eration at the highest achievable power output. A key element within this controller is the DC-DC boost con-

verter, which functions based on a selected algorithm that generates and applies a controlled sequence of duty 

cycles. These duty cycles govern the switching behavior of the DC-DC boost converter, thereby modifying the 

effective impedance seen by the PV array. This adjustment process continues iteratively until the system's op-

erating point coincides with the maximum power point, enabling optimal power extraction from the PV source.  

In the following sections, a brief overview of each optimization algorithm will be provided to highlight 

their operational mechanisms and enhancements. 

2.2.1. The PV System Controller Based on CSA 

The Cuckoo Search Algorithm (CSA), originally proposed by Yang and Deb in 2009, draws its inspiration 

from the brood parasitism exhibited by certain species of cuckoos. This optimization technique emulates the 

reproductive behavior of cuckoos, specifically their tendency to deposit eggs in the nests of other bird species. 

In addition, the algorithm employs Lévy flight-based stochastic movements to navigate the search space effi-

ciently. CSA is widely acknowledged for its robust global optimization performance, ease of implementation, 

and strong capability to avoid entrapment in local minima characteristics that render it highly effective for re-

al-time and complex optimization applications [18]. 

In the implementation of the CSA for PV systems controller, the nest positions representing candidate so-

lutions are characterized by the duty cycle values (dc), which are input to the DC-DC boost converter. These 

duty cycles span a continuous range between 0 and 1, with number (n) of distinct values evaluated during each 

iteration. The Le'vy flight is employed to generate additional duty cycle samples (   
(   )

) using the following 

equation [19]: 

   
(   )

    
( )      (

 

| |  ⁄
) (          )                                                                                           ( ) 
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Where, in the notation (   
(   )

), the superscript (t) denotes the iteration number, while the subscript (i) 

refers to the index of the duty cycle.   is represents the Le'vy scaling coefficient, the factor β=1.5, while the 

variables   and   are drawn from a normal distribution and are defined as follows: 

    (    
 )           (    

 )                                                                                                                                      ( ) 

Where 

   
               

   (
 (   )     (    )⁄

 ((   )  )        ((   )  ) ⁄  ⁄
)                                                                                  ( ) 

The variable   is the integral gamma function.  

The Pseudocode for using CSA in the PV system controller is as follows: 

 

Figure 2. The Pseudocode for Using CSA in PV System Controller. 

2.2.2. The PV System Controller Based on GWO Algorithm 

The Gray Wolf Optimizer (GWO), proposed by Mirjalili et al. in 2014, is a nature-inspired metaheuristic 

algorithm that models the social hierarchy and cooperative hunting behaviors of gray wolves in their natural 

environment. The algorithm emulates the leadership structure of a wolf pack, consisting of alpha, beta, delta, 

and omega wolves, alongside their coordinated strategies for encircling, pursuing, and attacking prey. By rep-

licating these social dynamics and adaptive hunting mechanisms, GWO achieves a balanced trade-off between 

exploration and exploitation within the search space. Its simplicity, robust convergence characteristics, and 

ability to avoid local optima contribute to its effectiveness, making it well-suited for solving complex real-time 

optimization problems [20]. 

The GWO algorithm is employed to update the Wolves positions (duty cycles) samples (   
(   )

) based on 

the equation 4. The position of the prey (Maximum PV Output Power) can be expressed by (  ). Also, the po-

sition of the Grey Wolfe (duty cycle) can be expressed by ( ).  

Step 1: Set the CSA strategy initial values as: 

 The minimum and maximum limits for the duty cycles values are [𝑑𝑚𝑖𝑛     𝑑𝑚𝑎𝑥   ]. 

 The first five nests position (duty cycles) vector are initialized as [0.1 0.3 0.5 0.7 0.9]. 

 The CSA discovery rate (pa = 0.25). 

Step 2: Send each duty cycle to the boost converter and for each one calculate the fitness function (PV Output Power): 

 Measured the PV output current 𝐼𝑝𝑣 and PV output voltage 𝑉𝑝𝑣. 

 Calculate the PV output power 𝑃𝑝𝑣   𝐼𝑝𝑣    𝑉𝑝𝑣. 

 Store the PV output power value. 

Step 3: Identify the global optimal duty cycle (𝑑𝑏𝑒𝑠𝑡) that corresponds to the iteration maximum output power (𝑃𝑚𝑎𝑥). 

Step 4: Identify the worst duty cycle (𝑑𝑤𝑜𝑟𝑠𝑡) that corresponds to the iteration minimum output power (𝑃𝑚𝑖𝑛). 

Step 5: If a random value is less than the discover rate (pa); replace (𝑑𝑤𝑜𝑟𝑠𝑡) with a new one using Levy flight equation. 

 Measured the PV output current 𝐼𝑝𝑣 and PV output Voltage 𝑉𝑝𝑣. 

 Calculate the PV output power 𝑃𝑝𝑣   𝐼𝑝𝑣    𝑉𝑝𝑣. 

 Update the PV output power values by replacing the new power value with (𝑃𝑚𝑖𝑛). 

 Update the global optimal duty cycle (𝑑𝑏𝑒𝑠𝑡). 

Step 6: Generate the new nests (duty cycles) for the next iteration by using Levy flight equation. 

Step 7: Repeat steps 2, 3, 4, and 5 for the present iteration. 

Step 8: If all the duty cycles are equals and reached the MPP, stay on sending that optimal duty cycle to the boost con-

verter; else repeat steps 6. 
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   ⃗⃗⃗⃗                                           ⃗⃗  ⃗   |   ⃗⃗⃗⃗      
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Also; 

 

   ⃗⃗⃗⃗                                                                                                                                                                          ( ) 

Where (    ,     ) are random values within the range [0,1], while (a) is a control parameter that linearly de-

creases from 2 to 0 over the course of iterations. This decreasing behavior models the transition from explora-

tion to exploitation where higher values of (a) encourage exploration of the search space, and as (a) approaches 

zero, the wolves converge on the prey (the algorithm catch and track the maximum available PV output power), 

simulating the final stage of the hunt at zero distance [21]. 

The Pseudocode for using GWO in the PV system controller is as follows: 

 

Figure 3. The Pseudocode for Using GWO in PV System Controller. 

2.2.3. The PV System Controller Based on PSO Algorithm 

Particle Swarm Optimization (PSO), first introduced by Kennedy and Eberhart in 1995, is a nature-inspired 

metaheuristic algorithm that draws inspiration from the collective social behaviors exhibited by flocks of birds 

and schools of fish. The algorithm models a swarm of particles representing candidate solutions, which itera-

tively update their positions in the search space by leveraging both individual experiences and the shared 

knowledge within the swarm. This dynamic interaction facilitates an effective balance between exploration and 

exploitation, enabling PSO to efficiently navigate complex optimization landscapes. Renowned for its concep-

tual elegance, rapid convergence properties, and resilience against premature convergence to local optima, PSO 

has been extensively applied to solve a diverse array of challenging real-world optimization problems [22]. 

In the implementation of the PSO for PV systems controller, the algorithm's parameters are fine-tuned to 

align with the characteristics of the PV system. These parameters include the swarm acceleration coefficient (α), 

set between 2 and 2.5, the inertia weight (θ), fixed at 0.5, and the self-acceleration coefficient (β), set between 1.5 

and 2. At each iteration, the velocity   
    and position    

    of each particle are updated using equations (7) 

and (8), respectively [23]. 

Step 1: Set the GWO strategy initial values as: 

 The minimum and maximum limits for the duty cycles values are [𝑑𝑚𝑖𝑛     𝑑𝑚𝑎𝑥   ]. 

 The first five Wolves (duty cycles) vector are initialized as [0.1 0.3 0.5 0.7 0.9]. 

Step 2: Send each duty cycle to the boost converter and for each one calculate the fitness function (PV Output Power): 

 Measured the PV output current 𝐼𝑝𝑣 and PV output voltage 𝑉𝑝𝑣. 

 Calculate the PV output power 𝑃𝑝𝑣   𝐼𝑝𝑣    𝑉𝑝𝑣. 

 Store the PV output power value. 

Step 3: Identify the Alpha wolf that corresponds to the highest output power value. Identify the Beta wolf that corre-

sponds to the second highest output power value. Identify the Delta wolves that corresponds to the third, fourth, 

and fifth output power values. 

Step 4: Update the Wolves position (duty cycles) by using equation 4. 

Step 5: Repeat steps 2 and 3 for the present iteration. 

Step 6: If all the Wolves position (duty cycles) are equals and reached the MPP, stay on sending that duty cycle to the 

boost converter; else repeat steps 4. 
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The Pseudocode for using PSO in the PV system controller is as follows: 

 

Figure 4. The Pseudocode for Using PSO in PV System Controller. 

2.2.4. The PV System Controller Based on MCSA 

The efficiency of the classical CSA has been significantly enhanced through the incorporation of an auxil-

iary sub-strategy. This sub-strategy, implemented as a dedicated software module, is responsible for extracting 

key measurement data from the CSA, followed by systematic data processing, organization, and storing the 

iterations' data. The processed information enables the identification of a high-potential region on the P–V 

characteristic curve, where the likelihood of locating the maximum available output power is substantially in-

creased. These refined boundaries are subsequently communicated back to the primary CSA, thereby guiding 

and constraining the search process within more promising solution spaces and improving overall convergence 

performance [13]. 

The flowchart for using MCSA in the PV system controller is as follows: 

Step 1: Set the PSO strategy initial values as: 

 The minimum and maximum limits for the duty cycles values are [𝑑𝑚𝑖𝑛     𝑑𝑚𝑎𝑥   ]. 

 The first five particles (duty cycles) vector are initialized as [0.1 0.3 0.5 0.7 0.9]. 

 Let the personal best position for each particle is zero. 

Step 2: Send each duty cycle to the boost converter and for each one calculate the fitness function (PV Output Power): 

 Measured the PV output current 𝐼𝑝𝑣 and PV output voltage 𝑉𝑝𝑣. 

 Calculate the PV output power 𝑃𝑝𝑣   𝐼𝑝𝑣    𝑉𝑝𝑣. 

 Store the PV output power value. 

Step 3: Identify the global best position that corresponds to the obtained maximum output power (𝑃𝑚𝑎𝑥). 

Step 4: For each particle (duty cycle), If its corresponds output power is greater than its personal best position, update 

the particle personal best position. 

Step 5: If the output power for any particle is greater than the global best position, update the global best position. 

Step 6: Update the particles position and velocity to obtain the newest duty cycles by using equation 8. 

Step 7: Repeat steps 2, 3, 4 and 5 for the present iteration. 

Step 8: If all the particles position (duty cycles) are equals and reached the MPP, stay on sending that duty cycle to the 

boost converter; else repeat steps 6. 
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Figure 5. The Flowchart for Using MCSA in PV System Controller. 

 

 

 

The Pseudocode for using MCSA in the PV system controller is as follows: 

Update search limits 

dmin > Any new d < dmax 

Calculate the fitness function of each new 
nest (the new power values P1, P2,…P5) 

Generate new samples using levy flight 
equation for the next iteration 

Send the max power's duty cycle(dbest) to the converter 

Max iteration? 
 

Generate a new 
nest to replace the 

worst one 

Calculate the pow-
er value of the new 

nest and update the 
global best duty 

cycle 

Initialize 5 nest positions (duty cycles) 

d1=0.1, d2=0.3, d3=0.5, d4=0.7, d5=0.9 
Set the search limits dmin = 0, dmax=1 

Calculate the fitness function of each nest 
(the power values P1,P2,…P5) 

Specify the global best duty cycle (dbest) 
which gets the (Pmax) from the PV module 

Arrange the volt-
age values in de-
scending order as 

(VA, VB,VC,VD,VE) 

Specify the worst duty cycle (dworst) which 
gets the (Pmin) from the PV module 

If (rand > Pa) 

 

The powers corre-
sponding to the 

arranged voltages 
are (PA, PB, PC, PD, 

PE) 

PC > PA 

dmin = dA dmin = dB 

PC > PE 

dmax = dE dmax = dD dmax = dE 

PC > PD 

PC > PE 

dmax = dD 

The highest two power values' dutycycles 
are dmax1 <  dmax2 

Update d = dmax2 + [(dmax1 - dmax2)/ 2] 
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Figure 6. The Pseudocode for Using MCSA in PV System Controller. 

 

 

 

 

  
Iterat o   umber###     e t  umber #        𝐼𝑝𝑣       𝑉𝑝𝑣         𝑃𝑝𝑣        𝑑𝑝𝑣

⋮ #             ⋮ #                           ⋮          ⋮            ⋮             ⋮
  

Step 1: Set the MCSA strategy initial values as: 

 The minimum and maximum limits for the duty cycles values are [𝑑𝑚𝑖𝑛     𝑑𝑚𝑎𝑥   ]. 

 The first five nests position (duty cycles) vector are initialized as [0.1 0.3 0.5 0.7 0.9]. 

 The CSA discovery rate (pa = 0.25). 

Step 2: Send each duty cycle to the boost converter and for each one calculate the fitness function (PV Output Power): 

 Measured the PV output current 𝐼𝑝𝑣 and PV output Voltage 𝑉𝑝𝑣. 

 Calculate the PV output power 𝑃𝑝𝑣   𝐼𝑝𝑣    𝑉𝑝𝑣. 

 Store the iteration values in a vector matrix as  

Step 3: Identify the global optimal duty cycle (𝑑𝑏𝑒𝑠𝑡) that corresponds to the iteration maximum output power (𝑃𝑚𝑎𝑥). 

Step 4: Identify the worst duty cycle (𝑑𝑤𝑜𝑟𝑠𝑡) that corresponds to the iteration minimum output power (𝑃𝑚𝑖𝑛). 

Step 5: If a random value is less than the discover rate (pa); replace (𝑑𝑤𝑜𝑟𝑠𝑡) with a new one using Levy flight equation. 

 Measured the PV output current 𝐼𝑝𝑣 and PV output Voltage 𝑉𝑝𝑣. 

 Calculate the PV output power 𝑃𝑝𝑣   𝐼𝑝𝑣    𝑉𝑝𝑣. 

 Update the PV output power values by replacing the new power value with (𝑃𝑚𝑖𝑛). 

 Update the global optimal duty cycle (𝑑𝑏𝑒𝑠𝑡). 

Step 6: After each iteration update the limits of the search area on P-V curve by; 

 Sort in descending order the iteration matrix rows according to the output PV voltage (𝑉𝑝𝑣). 

 Rename the arranged PV voltage values as: (𝑉𝐴 < 𝑉𝐵  <  𝑉𝐶  <  𝑉𝐷  <  𝑉𝐸). 

 Rename the PV power values associate to the arranged voltages to be: (𝑃𝐴, 𝑃𝐵, 𝑃𝐶 , 𝑃𝐷, 𝑃𝐸). 

 Rename the duty cycles values associate to the arranged voltages to be: (𝑑𝐴, 𝑑𝐵, 𝑑𝐶, 𝑑𝐷, 𝑑𝐸). 

 Update the new limits (𝑑𝑚𝑎𝑥& 𝑑𝑚𝑖𝑛) on the P-V curve for the next iteration search process as: 

if 𝑃𝐶  >  𝑃𝐴, set 𝑑𝑚𝑖𝑛   𝑑𝐵; else set 𝑑𝑚𝑖𝑛   𝑑𝐴. 

if 𝑃𝐶  >  𝑃𝐸 , set 𝑑𝑚𝑎𝑥   𝑑𝐷; else set 𝑑𝑚𝑎𝑥   𝑑𝐸. 

Step 7: Identify the highest stored power values (𝑃𝑚𝑎𝑥 
& 𝑃𝑚𝑎𝑥 

) and its associated duty cycles values (𝑑𝑃𝑚𝑎𝑥 
& 𝑑𝑃𝑚𝑎𝑥 

). 

Step 8: The CSA start to generate the new nests (duty cycles) for the next iteration by using Levy flight equation then: 

 check each new duty cycle as: 

if 𝑑𝑛𝑒𝑤𝑖  >  𝑑𝑚𝑎𝑥, set 𝑑𝑛𝑒𝑤𝑖
  𝑑𝑃𝑚𝑎𝑥 

 [(𝑑𝑃𝑚𝑎𝑥 
 𝑑𝑃𝑚𝑎𝑥 

)/ ]. 

if 𝑑𝑛𝑒𝑤𝑖  <  𝑑𝑚𝑖𝑛, set 𝑑𝑛𝑒𝑤𝑖
  𝑑𝑃𝑚𝑎𝑥 

 [(𝑑𝑃𝑚𝑎𝑥 
 𝑑𝑃𝑚𝑎𝑥 

)/ ]. 

Step 9: Repeat steps 2, 3, 4, and 5 for the present iteration. 

Step 10: If all the duty cycles are equals and reached the MPP, stay on sending that optimal duty cycle to the boost con-

verter; else repeat steps 6. 
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2.2.5. The PV System Controller Based on MGWO Algorithm 

The same previous software sub-strategy is added to the classical GWO algorithm to enhance the algo-

rithm's performance. The classical algorithm has interacted with it in an excellent way to narrow the search area 

after each iteration [12]. 

The flowchart for using MGWO in the PV system controller is as follows: 

 

Figure 7. The Flowchart for Using MGWO in PV System Controller. 

 

The Pseudocode for using MGWO in the PV system controller is as follows: 

For each duty cycle, measure and store its corresponding IPV 
and VPV and then calculate the output power PPV 

All duty cycles are equal (all 

the Wolves Catch the prey 

Update the search area limits 

dmin > Any generated d < dmax 

Send the new generated duty cycles one by one to the converter 

The GWO algorithm generates the new Wolves positions (new 
duty cycles samples) for the next iteration. 

Arrange the (5) operating points' voltages in 

descending order and named their as 

 (VA < VB <   VC  <  VD  < VE) 

The output power values corresponding to the 
arranged voltages are 

 (PA, PB, PC, PD, PE) 
 

PC > PA 

dmin = dA dmin = dB 

PC > PE 

dmax = dE dmax = dD dmax = dE 

PC > PD 

PC > PE 

dmax = dD 

The highest two power values' duty cycles are dmax1 < dmax2 
Update d = dmax2 + [(dmax1 - dmax2) / 2] 

 

 

Send the MPP's duty cycle to the converter 

The GWO algorithm initialize (5) Wolves (duty 

cycles), [0.1, 0.3, 0.5, 0.7, 0.9]. Set dmin = 0, set 

dmax = 1, Evaluate each duty cycle to calculate 

the power value for each Wolfe. 
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Figure 8. The Pseudocode for Using MGWO in PV System Controller. 

 

2.2.6. The PV System Controller Based on MPSO Algorithm 

The previously described software-based sub-strategy has also been integrated into the classical PSO al-

gorithm to enhance its performance. The classical PSO demonstrated effective synergy with the sub-strategy, 

utilizing it to progressively refine and constrain the search space following each iteration [24]. 

The flowchart for using MPSO in the PV system controller is as follows: 

 

  
Iterat o   umber###     e t  umber #        𝐼𝑝𝑣       𝑉𝑝𝑣         𝑃𝑝𝑣        𝑑𝑝𝑣

⋮ #             ⋮ #                           ⋮          ⋮            ⋮             ⋮
  

Step 1: Set the MGWO strategy initial values as: 

 The minimum and maximum limits for the duty cycles values are [𝑑𝑚𝑖𝑛     𝑑𝑚𝑎𝑥   ]. 

 The first five Wolves (duty cycles) vector are initialized as [0.1 0.3 0.5 0.7 0.9]. 

Step 2: Send each duty cycle to the boost converter and for each one calculate the fitness function (PV Output Power): 

 Measured the PV output current 𝐼𝑝𝑣 and PV output voltage 𝑉𝑝𝑣. 

 Calculate the PV output power 𝑃𝑝𝑣   𝐼𝑝𝑣    𝑉𝑝𝑣. 

 Store the iteration values in a vector matrix as  

Step 3: Identify the Alpha wolf that corresponds to the highest output power value. Identify the Beta wolf that corre-

sponds to the second highest output power value. Identify the Delta wolves that corresponds to the third, fourth, 

and fifth output power values. 

Step 4: After each iteration update the limits of the search area on P-V curve by; 

 Sort in descending order the iteration matrix rows according to the output PV voltage (𝑉𝑝𝑣). 

 Rename the arranged PV voltage values as: (𝑉𝐴 < 𝑉𝐵  <  𝑉𝐶  <  𝑉𝐷  <  𝑉𝐸). 

 Rename the PV power values associate to the arranged voltages to be: (𝑃𝐴, 𝑃𝐵, 𝑃𝐶 , 𝑃𝐷, 𝑃𝐸). 

 Rename the duty cycles values associate to the arranged voltages to be: (𝑑𝐴, 𝑑𝐵, 𝑑𝐶, 𝑑𝐷, 𝑑𝐸). 

 Update the new limits (𝑑𝑚𝑎𝑥& 𝑑𝑚𝑖𝑛) on the P-V curve for the next iteration search process as: 

if 𝑃𝐶  >  𝑃𝐴, set 𝑑𝑚𝑖𝑛   𝑑𝐵; else set 𝑑𝑚𝑖𝑛   𝑑𝐴. 

if 𝑃𝐶  >  𝑃𝐸 , set 𝑑𝑚𝑎𝑥   𝑑𝐷; else set 𝑑𝑚𝑎𝑥   𝑑𝐸. 

Step 5: Identify the highest stored power values (𝑃𝑚𝑎𝑥 
& 𝑃𝑚𝑎𝑥 

) and its associated duty cycles values (𝑑𝑃𝑚𝑎𝑥 
& 𝑑𝑃𝑚𝑎𝑥 

). 

Step 6: The GWO start to update the Wolves positions (duty cycles) for the next iteration by using equation 4 then: 

 check each new duty cycle as: 

if 𝑑𝑛𝑒𝑤𝑖  >  𝑑𝑚𝑎𝑥, set 𝑑𝑛𝑒𝑤𝑖
  𝑑𝑃𝑚𝑎𝑥 

 [(𝑑𝑃𝑚𝑎𝑥 
 𝑑𝑃𝑚𝑎𝑥 

)/ ]. 

if 𝑑𝑛𝑒𝑤𝑖  <  𝑑𝑚𝑖𝑛, set 𝑑𝑛𝑒𝑤𝑖
  𝑑𝑃𝑚𝑎𝑥 

 [(𝑑𝑃𝑚𝑎𝑥 
 𝑑𝑃𝑚𝑎𝑥 

)/ ]. 

Step 7: Repeat steps 2 and 3 for the present iteration. 

Step 8: If all the Wolves position (duty cycles) are equals and reached the MPP, stay on sending that duty cycle to the 

boost converter; else repeat steps 4, 5, 6, and 7. 
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Figure 9. The Flowchart for Using MPSO in PV System Controller. 

 

 

 

The Pseudocode for using MPSO in the PV system controller is as follows: 

For each duty cycle, measure and store its corresponding IPV 
and VPV and then calculate the output power PPV 

All duty cycle values are 
equal and reach the MPP 

Update the search area limits 

dmin > Any generated d < dmax 

Send the new generated duty cycles one by one to the converter 

The PSO generates the new generation (particles) (new duty 

cycles samples) for the next iteration. 
 

Arrange the voltage in descending order  
as (VA < VB <   VC  <  VD  < VE) 

The output power values corresponding to the 
arranged voltages are 

 (PA, PB, PC, PD, PE) 
 

PC > PA 

dmin = dA dmin = dB 

PC > PE 

dmax = dE dmax = dD dmax = dE 

PC > PD 

PC > PE 

dmax = dD 

The highest two power values' duty cycles are dmax1 < dmax2 

Update d = dmax2 + [(dmax1 - dmax2) / 2] 

 

 

Send the MPP's duty cycle to the converter 

The PSO Initialize 5 duty cycles (particles), send 

it one by one to the converter, set dmin = 0, set 
dmax = 1, measure and store the voltage and cur-
rent then calculate the power for each particle 
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Figure 10. The Pseudocode for Using MPSO in PV System Controller. 

3. Results and Discussion 

3.1. The Different Simulated PV Systems 

The PV system simulated at four different shapes to imitate PV strings subjected to RSI or ISC.  

The first PV string (pattern-1), consists of two PV modules each of them exposure to uniform sun light 

density of       /   and operates at the surrounding temperature of    . This pattern mimics a PV string 

operates at RSI. In this case, the PV String output has a maximum available power of value 260W. This maxi-

  
Iterat o   umber###     e t  umber #        𝐼𝑝𝑣       𝑉𝑝𝑣         𝑃𝑝𝑣        𝑑𝑝𝑣

⋮ #             ⋮ #                           ⋮          ⋮            ⋮             ⋮
  

Step 1: Set the MPSO strategy initial values as: 

 The minimum and maximum limits for the duty cycles values are [𝑑𝑚𝑖𝑛     𝑑𝑚𝑎𝑥   ]. 

 The first five particles (duty cycles) vector are initialized as [0.1 0.3 0.5 0.7 0.9]. 

 Let the personal best position for each particle is zero. 

Step 2: Send each duty cycle to the boost converter and for each one calculate the fitness function (PV Output Power): 

 Measured the PV output current 𝐼𝑝𝑣 and PV output voltage 𝑉𝑝𝑣. 

 Calculate the PV output power 𝑃𝑝𝑣   𝐼𝑝𝑣    𝑉𝑝𝑣. 

 Store the iteration values in a vector matrix as  

Step 3: Identify the global best position that corresponds to the iteration maximum output power (𝑃𝑚𝑎𝑥). 

Step 4: For each particle (duty cycle), If its corresponds output power is greater than its personal best position, update 

the particle personal best position. 

Step 5: If the output power for any particle is greater than the global best position, update the global best position. 

Step 6: After each iteration update the limits of the search area on P-V curve by; 

 Sort in descending order the iteration matrix rows according to the output PV voltage (𝑉𝑝𝑣). 

 Rename the arranged PV voltage values as: (𝑉𝐴 < 𝑉𝐵  <  𝑉𝐶  <  𝑉𝐷  <  𝑉𝐸). 

 Rename the PV power values associate to the arranged voltages to be: (𝑃𝐴, 𝑃𝐵, 𝑃𝐶 , 𝑃𝐷, 𝑃𝐸). 

 Rename the duty cycles values associate to the arranged voltages to be: (𝑑𝐴, 𝑑𝐵, 𝑑𝐶, 𝑑𝐷, 𝑑𝐸). 

 Update the new limits (𝑑𝑚𝑎𝑥& 𝑑𝑚𝑖𝑛) on the P-V curve for the next iteration search process as: 

if 𝑃𝐶  >  𝑃𝐴, set 𝑑𝑚𝑖𝑛   𝑑𝐵; else set 𝑑𝑚𝑖𝑛   𝑑𝐴. 

if 𝑃𝐶  >  𝑃𝐸 , set 𝑑𝑚𝑎𝑥   𝑑𝐷; else set 𝑑𝑚𝑎𝑥   𝑑𝐸. 

Step 7: Identify the highest stored power values (𝑃𝑚𝑎𝑥 
& 𝑃𝑚𝑎𝑥 

) and its associated duty cycles values (𝑑𝑃𝑚𝑎𝑥 
& 𝑑𝑃𝑚𝑎𝑥 

). 

Step 8: The PSO start to update the particles position and velocity (duty cycles) for the next iteration by using equation 8 

then: 

 check each new duty cycle as: 

if 𝑑𝑛𝑒𝑤𝑖  >  𝑑𝑚𝑎𝑥, set 𝑑𝑛𝑒𝑤𝑖
  𝑑𝑃𝑚𝑎𝑥 

 [(𝑑𝑃𝑚𝑎𝑥 
 𝑑𝑃𝑚𝑎𝑥 

)/ ]. 

if 𝑑𝑛𝑒𝑤𝑖  <  𝑑𝑚𝑖𝑛, set 𝑑𝑛𝑒𝑤𝑖
  𝑑𝑃𝑚𝑎𝑥 

 [(𝑑𝑃𝑚𝑎𝑥 
 𝑑𝑃𝑚𝑎𝑥 

)/ ]. 

Step 9: Repeat steps 2, 3, 4 and 5 for the present iteration. 

Step 10: If all the particles position (duty cycles) are equals and reached the MPP, stay on sending that duty cycle to the 

boost converter; else repeat steps 6, 7, and 8. 
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mum power can be obtained when the PV string operates at voltage of 35.5V, and current of 7.3A as shown in 

the PV system characteristics’ curves of Figure 11 (a, b). 

The second PV string (pattern-2), consists of two PV modules each of them operates at the surrounding 

temperature of     and exposure to non-uniform sun light of       /   and      /   respectively. This 

pattern mimics a PV string that operates at ISC. In this case, the PV String output has a global maximum power 

of value 170W. This global maximum power can be obtained when the PV string operates at voltage of 37V, and 

current of 4.6A as shown in the PV system characteristics’ curves of Figure 11 (c, d). 

The third PV string (pattern-3), consists of three PV modules each of them operates at the air temperature 

of     and exposure to non-uniform sun light of       /  ,      /   and      /   respectively. This 

pattern mimics a PV string operates at complex ISC. In this case, the PV String output has a global maximum 

power of value 165W. This global maximum power can be obtained when the PV string operates at voltage of 

36.5V, and current of 4.5A as shown in the PV system characteristics’ curves of Figure 11 (e, f). 

The fourth PV string (pattern-4), consist of four PV modules each of them operates at the environmental 

temperature of     and exposure to non-uniform sun light of       /  ,      /  ,      /   and 

     /   respectively. This pattern mimics a PV string that operates at more complex ISC. In this case, the PV 

String output has a global maximum power of value 215W. This global maximum power can be obtained when 

the PV string operates at voltage of 56V, and current of 3.8A as shown in the PV system characteristics’ curves 

of Figure 11 (g, h). 

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

 
(g) (h) 

Figure 11. Different Shapes of PV System Characteristics. 
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The four-pattern data can be summarized in Table 1. 

Table 1. The Four-PV Pattern Data. 

PV String 
Number of PV 

Modules 

Irradiance at each 

Module ( /  ) 

Surrounding 

Temperature 

Maximum Power Point 

Value Voltage Current 

Pattern-1 2 [1000 1000]     260W 35.5V 7.3A 

Pattern-2 2 [1000 600]     170W 37V 4.6A 

Pattern-3 3 [1000 600 200]     165W 36.5V 4.5A 

Pattern-4 4 [1000 700 500 300]     215W 56V 3.8A 

3.2. Evaluating the First PV System Pattern (Pattern-1) by Different Algorithms 

The first evaluation is based on tracking the maximum available output power when the PV system con-

troller is based on the Classical CSA (CCSA). In this case, the PV system output power versus the convergence 

speed curve is shown in Figure 12 (a). It can be seen that the CCSA succeeds in letting the PV system deliver the 

maximum power it could extract, which is equal to 254.2W. The convergence speed takes 0.8s. During the 

convergence, the transient state has medium oscillations, and the steady state has a high stable and flat output. 

The pattern-1 output efficiency can be calculated as 97.77%. 

The second evaluation is to monitor the maximum available output power tracking for the PV system by 

using the Classical GWO (CGWO). Figure 12 (c) illustrates the relationship between the PV system's output 

power and its convergence speed. The results indicate that the CGWO effectively enabled the PV system to 

deliver its maximum extractable power of 254.9W within a convergence time of 0.74s. During this convergence, 

the system exhibited high oscillations before reaching a high stable and consistent steady-state output. The 

calculated pattern-1 output efficiency was 98.04%. 

The third evaluation tracked the maximum available output power of the PV system depending on the 

Classical PSO (CPSO). Figure 12 (e) shows how the PV system's power output and convergence speed were 

related in this evaluation. The figure reveals that the CPSO, successfully allowed the PV system to track its 

maximum power of 254.7W in a long time of 1.53s. During this convergence time, the system displayed high 

oscillations before settling into a minor oscillations output. The determined pattern-1 output efficiency was 

97.96%. 

The fourth evaluation is to monitor the maximum available output power tracking for the PV system by 

using the Modified CSA (MCSA). Figure 12 (b) illustrates the correlation between the PV system's output power 

and its rate of convergence during this assessment. The results indicated that the MCSA effectively enabled the 

PV system to track the maximum available output power of 254.1W within 0.49s. Throughout this convergence, 

the system exhibited significant fluctuations before establishing a steady and high stable output. The calculated 

efficiency of the pattern-1's output was 97.73% 

The fifth evaluation tracked the maximum available output power of the PV system depending on the 

Modified GWO (MGWO). Figure 12 (d) shows how the PV system's power output and convergence speed were 

related in this evaluation. The figure reveals that the MGWO successfully allowed the PV system to track its 

maximum power of 257.6W in a short time of 0.17s. Notably, the system's output fluctuated slightly before sta-

bilizing during this convergence period. The determined output efficiency of the pattern-1 was 99.08%. 

The sixth evaluation's results indicated that the PV system can use the Modified PSO (MPSO) to reach the 

maximum available output power of 257.1W in 0.29s. As depicted in Figure 12 (f), the PV system's output 

power was linked to its convergence speed by a slight fluctuating output before settling with high stable during 

the steady state. The calculated efficiency of the pattern-1's output was 98.88%. 
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3.3. Evaluating the Second PV System Pattern (Pattern-2) by Different Algorithms 

The first evaluation is to monitor the global maximum available output power tracking for the PV system 

by using the Classical CSA (CCSA). Figure 13 (a) illustrates the relationship between the PV system's output 

power and its convergence speed. The results indicate that the CCSA effectively enabled the PV system to de-

liver its global maximum extractable power of 168.27W within a convergence time of 0.98s. During this con-

vergence, the system exhibited medium oscillations before reaching a high stable and consistent steady-state 

output. The calculated pattern-2 output efficiency was 98.98%. 

The second evaluation is based on tracking the global maximum available output power when the PV 

system controller is based on the Classical GWO (CGWO). In this case, the PV system output power versus the 

convergence speed curve is shown in Figure 13 (c). It can be seen that, the CGWO succeeds in letting the PV 

system deliver the global maximum power it could extract, which is equal to 168.67W. The convergence speed 

takes 0.73s. During the convergence, the transient state has high oscillations, and the steady state has a high 

stable and flat output. The pattern-2 output efficiency can be calculated as 99.22%. 

The third evaluation tracked the global maximum available output power of the PV system depending on 

the Classical PSO (CPSO). Figure 13 (e) shows how the PV system's power output and convergence speed were 

related in this evaluation. The figure reveals that the CPSO, successfully allowed the PV system to track its 

global maximum power of 168.2W in a long time of 1.89s. During this convergence time, the system displayed 

medium oscillations before settling into a minor oscillations output. The determined pattern-2 output efficiency 

was 98.94%. 

The fourth evaluation is to monitor the global maximum available output power tracking for the PV system 

by using the Modified CSA (MCSA). Figure 13 (b) illustrates the correlation between the PV system's output 

power and its rate of convergence during this assessment. The results indicated that the MCSA effectively ena-

bled the PV system to track the global maximum available output power of 166.68W within 0.25s. Throughout 

this convergence, the system exhibited significant fluctuations before establishing a steady and high stable 

output. The calculated efficiency of the pattern-2's output was 98.05% 

The fifth evaluation tracked the global maximum available output power of the PV system depending on 

the Modified GWO (MGWO). Figure 13 (d) shows how the PV system's power output and convergence speed 

were related in this evaluation. The figure reveals that the MGWO successfully allowed the PV system to track 

its maximum power of 168.6W in a short time of 0.17s. Notably, the system's output fluctuated slightly before 

reaching high stabilizing during this convergence period. The determined output efficiency of the pattern-2 was 

99.18%. 

The sixth evaluation's results indicated that the PV system can use the Modified PSO (MPSO) to reach the 

global maximum available output power of 168.53W in 0.35s. As depicted in Figure 13 (f), the PV system's 

output power was linked to its convergence speed by a slight fluctuating output before settling with high stable 

during the steady state. The calculated efficiency of the pattern-2's output was 99.14%. 

3.4. Evaluating the Third PV System Pattern (Pattern-3) by Different Algorithms 

The first evaluation tracked the global maximum available output power of the PV system depending on 

the Classical CSA (CCSA). Figure 14 (a) shows how the PV system's power output and convergence speed were 

related in this evaluation. The figure reveals that the CCSA, successfully allowed the PV system to track its 

global maximum power of 163.34W in a time of 0.79s. During this convergence time, the system displayed me-

dium oscillations before settling into a high stable output. The determined pattern-3 output efficiency was 

98.99%. 

The second evaluation is to monitor the global maximum available output power tracking for the PV sys-

tem by using the Classical GWO (CGWO). Figure 14 (c) illustrates the relationship between the PV system's 

output power and its convergence speed. The results indicate that the CGWO effectively enabled the PV system 

to deliver its global maximum extractable power of 164.49W within a convergence time of 0.73s. During this 

convergence, the system exhibited medium oscillations before reaching a high stable and consistent steady-state 

output. The calculated pattern-3 output efficiency was 99.69%. 

The third evaluation is based on tracking the global maximum available output power when the PV system 

controller is based on the Classical PSO (CPSO). In this case, the PV system output power versus the conver-
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gence speed curve is shown in Figure 14 (e). It can be seen that, the CPSO succeeds in letting the PV system 

deliver the global maximum power it could extract, which is equal to 163.87W. The convergence speed takes 

long time of 1.88s. During the convergence, the transient state has medium oscillations, and the steady state has 

a minor oscillations output. The pattern-3 output efficiency can be calculated as 99.32%. 

The fourth evaluation is to monitor the global maximum available output power tracking for the PV system 

by using the Modified CSA (MCSA). Figure 14 (b) illustrates the correlation between the PV system's output 

power and its rate of convergence during this assessment. The results indicated that the MCSA effectively ena-

bled the PV system to track the global maximum available output power of 163.9W within 0.28s. Throughout 

this convergence, the system exhibited significant fluctuations before establishing a steady and high stable 

output. The calculated efficiency of the pattern-3's output was 99.33% 

The fifth evaluation tracked the global maximum available output power of the PV system depending on the 

Modified GWO (MGWO). Figure 14 (d) shows how the PV system's power output and convergence speed were re-

lated in this evaluation. The figure reveals that the MGWO successfully allowed the PV system to track its maximum 

power of 164.8W in a short time of 0.15s. Notably, the system's output fluctuated slightly before reaching high stabi-

lizing during this convergence period. The determined output efficiency of the pattern-3 was 99.88%. 

The sixth evaluation's results indicated that the PV system can use the Modified PSO (MPSO) to reach the 

global maximum available output power of 164.6W in 0.35s. As depicted in Figure 14 (f), the PV system's output 

power was linked to its convergence speed by a slight fluctuating output before settling with high stable during 

the steady state. The calculated efficiency of the pattern-3's output was 99.76%. 

3.5. Evaluating the Fourth PV System Pattern (Pattern-4) by Different Algorithms 

The first evaluation is based on tracking the maximum available output power when the PV system con-

troller is based on the Classical CSA (CCSA). In this case, the PV system output power versus the convergence 

speed curve is shown in Figure 15 (a). It can be seen that the CCSA succeeds in letting the PV system deliver the 

maximum power it could extract, which is equal to 207.1W. The convergence speed takes 0.74s. During the 

convergence, the transient state has medium oscillations, and the steady state has a high stable and flat output. 

The pattern-4 output efficiency can be calculated as 96.33%. 

The second evaluation is to monitor the maximum available output power tracking for the PV system by 

using the Classical GWO (CGWO). Figure 15 (c) illustrates the relationship between the PV system's output 

power and its convergence speed. The results indicate that the CGWO effectively enabled the PV system to 

deliver its maximum extractable power of 210.26W within a convergence time of 0.72s. During this conver-

gence, the system exhibited medium oscillations before reaching a high stable and consistent steady-state out-

put. The calculated pattern-4 output efficiency was 97.80%. 

The third evaluation tracked the maximum available output power of the PV system depending on the Clas-

sical PSO (CPSO). Figure 15 (e) shows how the PV system's power output and convergence speed were related in 

this evaluation. The figure reveals that the CPSO, successfully allowed the PV system to track its maximum power 

of 209.1W in a long time of 1.52s. During this convergence time, the system displayed medium oscillations before 

settling into a minor oscillations output. The determined pattern-4 output efficiency was 97.26%. 

The fourth evaluation is to monitor the maximum available output power tracking for the PV system by 

using the Modified CSA (MCSA). Figure 15 (b) illustrates the correlation between the PV system's output power 

and its rate of convergence during this assessment. The results indicated that the MCSA effectively enabled the 

PV system to track the maximum available output power of 205.8W within 0.25s. Throughout this convergence, 

the system exhibited significant fluctuations before establishing a steady and high stable output. The calculated 

efficiency of the pattern-4's output was 95.72% 

The fifth evaluation tracked the maximum available output power of the PV system depending on the 

Modified GWO (MGWO). Figure 15 (d) shows how the PV system's power output and convergence speed were 

related in this evaluation. The figure reveals that the MGWO successfully allowed the PV system to track its 

maximum power of 210.19W in a short time of 0.23s. Notably, the system's output fluctuated slightly before 

stabilizing during this convergence period. The determined output efficiency of the pattern-4 was 97.76%. 

The sixth evaluation's results indicated that the PV system can use the Modified PSO (MPSO) to reach the 

maximum available output power of 202.37W in 0.26s. As depicted in Figure 15 (f), the PV system's output 
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power was linked to its convergence speed by a slight fluctuating output before settling with high stable during 

the steady state. The calculated efficiency of the pattern-4's output was 94.13%. 

  

(a) Classical CSA (b) Modified CSA 

  

(c) Classical GWO (d) Modified GWO 

  

(e) Classical PSO (f) Modified PSO 

Figure 12. The PV Output Waveform for Pattern-1 by using different strategies (a) CCSA, (b) MCSA, (c) CGWO, (d) MGWO, (e) 

CPSO, (f) MPSO. 
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(a) Classical CSA (b) Modified CSA 

  
(c) Classical GWO (d) Modified GWO 

  

(e) Classical PSO (f) Modified PSO 

Figure 13. The PV Output Waveform for Pattern-2 by using different strategies (a) CCSA, (b) MCSA, (c) CGWO, (d) MGWO, (e) 

CPSO, (f) MPSO. 
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(a) Classical CSA (b) Modified CSA 

  
(c) Classical GWO (d) Modified GWO 

  

(e) Classical PSO (f) Modified PSO 

Figure 14. The PV Output Waveform for Pattern-3 by using different strategies (a) CCSA, (b) MCSA, (c) CGWO, (d) MGWO, (e) 

CPSO, (f) MPSO. 
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(a) Classical CSA (b) Modified CSA 

  
(c) Classical GWO (d) Modified GWO 

  
(e) Classical PSO (f) Modified PSO 

Figure 15. The PV Output Waveform for Pattern-4 by using different strategies (a) CCSA, (b) MCSA, (c) CGWO, (d) MGWO, (e) 

CPSO, (f) MPSO. 
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3.6. Comparative Analysis for the Previous Evaluations 

By the previous evaluations, all the results can be summarizing at Table 2. Also, a comparative analysis for 

the classical and modified CSA, GWO, and PSO algorithms performance can be achieved. This comparison 

helps on choosing the effective controller strategy for letting the PV system dealing with the complex ISC. 

Table 2. The PV Patterns Evaluations Results. 

Conditions Algorithm 

Output 

Power 

(W) 

Efficiency 
Convergence 

Speed (Sec) 

Oscillation specification 

Transient Steady State 

Normal Condition 

(No Shading) 

MPP is 260W at 35.5V 

CSA 254.2 97.77% 0.8 Medium Oscillations High Stable 

GWO 254.9 98.04% 0.74 High Oscillations High Stable 

PSO 254.7 97.96% 1.53 High Oscillations Minor Oscillations 

MCSA  254.1 97.73% 0.49 Slight Oscillations High Stable 

MGWO 257.6 99.08% 0.17 Slight Oscillations High Stable 

MPSO 257.1 98.88% 0.29 Slight Oscillations High Stable 

Irregular Shading 

(String of 2 PV Modules) 

GMPP is 170W at 37V 

CSA 168.27 98.98% 0.98 Medium Oscillations High Stable 

GWO 168.67 99.22% 0.73 High Oscillations High Stable 

PSO 168.2 98.94% 1.89 Medium Oscillations Minor Oscillations 

MCSA  166.68 98.05% 0.25 Slight Oscillations High Stable 

MGWO 168.6 99.18% 0.17 Slight Oscillations High Stable 

MPSO 168.53 99.14% 0.35 Slight Oscillations High Stable 

Complex Irregular 

Shading 

(String of 3 PV Modules) 

GMPP is 165W at 36.5V 

CSA 163.34 98.99% 0.79 Medium Oscillations High Stable 

GWO 164.49 99.69% 0.73 Medium Oscillations High Stable 

PSO 163.87 99.32% 1.88 Medium Oscillations Minor Oscillations 

MCSA  163.9 99.33% 0.28 Slight Oscillations High Stable 

MGWO 164.8 99.88% 0.15 Slight Oscillations High Stable 

MPSO 164.6 99.76% 0.35 Slight Oscillations High Stable 

More Complex Irregular 

Shading 

(String of 4 PV Modules) 

GMPP is 215W at 56V 

CSA 207.1 96.33% 0.74 Medium Oscillations High Stable 

GWO 210.26 97.80% 0.72 Medium Oscillations High Stable 

PSO 209.1 97.26% 1.52 Medium Oscillations Minor Oscillations 

MCSA  205.8 95.72% 0.25 Slight Oscillations High Stable 

MGWO 210.19 97.76% 0.23 Slight Oscillations High Stable 

MPSO 202.37 94.13% 0.26 Slight Oscillations High Stable 

Firstly, the patterns’ convergence speed results indicate that each modified algorithm outperforms its 

classic counterpart. It achieved the goal of tracking effectively in terms of tracking speed with minor oscilla-

tions. For instance, notable enhancements were achieved through the implementation of the modified PSO al-

gorithm. The CPSO exhibited relatively prolonged stabilization times of 1.53s, 1.89s, 1.88s, and 1.52s. In com-

parison, the Modified PSO (MPSO) demonstrated significantly faster convergence, requiring only 0.29s, 0.35s, 

0.35s, and 0.26s, respectively. 
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Secondly, it is observed that the tracking efficiency of all the modified algorithms is nearly equal. There-

fore, the comparison criteria have been prioritized in order of significance: purposeful convergence speed, fol-

lowed by lower oscillation during the transient state, and finally, tracking efficiency.  

Thirdly, it is observed that the Modified Particle Swarm Optimization (MPSO) algorithm exhibits inferior 

performance compared to the other two algorithms, as it consistently records the longest convergence times 

across all evaluations of PV string operations under ISC. 

Finally, the comparative analysis between the two most effective modified algorithms, MCSA and MGWO, 

results in selecting the optimal PV string controller strategy. The MGWO algorithm displays outstanding per-

formance across all evaluations, particularly as the complexity of ISC increases. In the first evaluation, the 

MGWO algorithm delivered a higher efficiency of 99.08% at 0.17s. While the MCSA delivered 97.73% after 

0.49s. In the second evaluation, the MGWO algorithm achieved a higher efficiency of 99.18% within 0.17s, 

whereas the MCSA achieved 98.05% after 0.25s. During the third evaluation, the MGWO algorithm attained a 

superior efficiency of 99.88% in just 0.15s, while the MCSA algorithm reached an efficiency of 99.33% after 0.28s. 

In the final evaluation, the MGWO algorithm demonstrated a higher efficiency of 97.76% within 0.23s, com-

pared to the MCSA algorithm, which achieved 95.72% after 0.25s. 

The superiority of the MGWO algorithm's performance over MCSA is due to two factors. The first factor is 

the dynamic design of the GWO algorithm, which depends on the effective balance of exploration and exploi-

tation phases. It can be achieved by the individuals' organization of the GWO algorithm among three levels of 

searching (α, β, δ) to reach the best solution. The second factor is the effective modification that has been added 

to the GWO algorithm. It maintains a deliberate exploration of the search space, allowing the search to be 

quickly directed toward optimal solutions. Figures 13 and 14 are bar charts that were constructed to portray the 

algorithms' effective performance easily. 

 

 

Figure 16. The Comparison Between Different Strategies Convergence Speed. 

 

Figure 17. The Comparison Between Different Strategies Tracking Efficiency. 
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3.7. Testing PV Water Pumps as an Application 

Solar water pumps are one of the most famous applications of PV panels in ISC. They operate in remote 

areas without electricity networks and are surrounded by irregular shading caused by trees, various plants, 

birds, and other factors. 

In this tested application, the PV water pumping system consists of four parts, namely: the PV system, the 

DC to AC inverter, the Induction Motor, and the water pump as shown in Figure 18. The PV system has two PV 

strings associated with a DC-DC boost converter and controlled by one of the mentioned algorithm strategies 

(CCSA, CGWO, CPSO, MCSA, MGWO, MPSO) to track the global available output power. The inverter used to 

convert the DC-DC boost converter output DC voltage to AC voltage, which is suitable for driving the Induc-

tion Motor. The induction motor is more effective in this application for driving the water pump. 

 

 

Figure 18. The PV Water Pumps as an Application. 

The MATLAB / Simulink has been used to simulate that application to evaluate the solar water pumping 

system performance at different controller strategies. The PV panel was affected by ISC due to one of the sur-

rounding factors. according to that, the first PV string received 1000 W/m^2, while the second PV string re-

ceived 200 W/m^2. This condition lets the PV system's output power have a global maximum power of 915W 

and a local maximum power of 363W. The induction motor has the parameters of rated speed of 1420 rpm, 

rated voltage of 230V, and the nominal power of 1500W.  

The simulation test results have been summarized in Table 3. These results stressed that the (MGWO) has 

the perfect performance for driving the PV water pump system. It extracts the higher power value of 912W from 

the PV system compared to the other algorithms, as shown in Figure 19 (d). It ended its tracking process during 

0.025s. The induction motor rotor reached 698.7 rpm with a load torque of 2.59 N.m. The MCSA comes in the 

second arrangement for the system performance. It reached the global maximum power of 909W at 0.032s. In 

this case, the induction motor reached 697 rpm with a load torque of 2.54 N.m. The lowest performance is as-

sociated with the MPSO. It lets the induction motor reach 696 rpm when the algorithm extracts the power of 

907W at 0.036s. 

Table 3. The PV Water Pumping System Results. 

Algorithm 

The PV System The Water Pump 

Output 

Power (W) 
Efficiency 

Convergence 

Speed (Sec) 

Oscillation Specification Speed 

(rpm) 

Torque 

(N.m) Transient Steady State 

CCSA 821 89.73% 0.098 High Oscillations High Stable 632 1.99 

CGWO 881 96.28% 0.025 Slight Oscillations High Stable 672 2.23 

CPSO 719 78.58% 0.164 Medium Oscillations Minor Oscillations 556.6 1.71 

MCSA  909 99.34% 0.032 Slight Oscillations High Stable 697.3 2.54 

MGWO 912 99.67% 0.025 Slight Oscillations High Stable 698.7 2.59 

MPSO 907 99.13% 0.036 Slight Oscillations High Stable 696.2 2.5 
 

DC to DC 

Boost Con-

verter 

DC to AC 

Inverter 
IM  

Induction Motor 

Water Pump 

DC Link 

PV panels 
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(a) Classical CSA 

  
(b) Modified CSA 

  
(c) Classical GWO 

  
(d) Modified GWO 

  

(e) Classical PSO 

  

(f) Modified PSO 

Figure 19. The PV Outputs, the Induction Motor Speed (rpm), and the Pump torque Waveforms for the PV Water Pumping Sys-

tem using different strategies (a) CCSA, (b) MCSA, (c) CGWO, (d) MGWO, (e) CPSO, (f) MPSO. 
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Figures 17 and 18 are bar charts that were constructed to portray the algorithms' effective performance for 

the PV Water Pump application easily. 

 

 

Figure 20. The Comparison Between Different Strategies Convergence Speed for PV Water Pump as an Application. 

 

 

Figure 21. The Comparison Between Different Strategies System Efficiency for PV Water Pump as an Application. 

4. The Experimental Results 

The performance of the proposed modified algorithms was experimentally validated through a laboratory 

test, as illustrated in Figure 22(a). The experimental setup comprises three primary components. The first 

component is the PV emulator, implemented using two adjustable DC power supplies in conjunction with 

multiple power resistors to simulate various irradiation conditions. The second component is the power inter-

face, which consists of a boost converter equipped with a 3 mH, 7 A inductor, a capacitor bank rated at 

2×2200 μF/50 V, a 100 V/10 A fast recovery diode, and a 100 V/25 A power MOSFET. The third component is the 

control unit, which includes a voltage sensor, a current sensor, a gate driver, and a TMS320F28335 digital signal 

controller (32-bit, 150 MHz). The output of the system is connected to a battery bank composed of two 12 V, 

7 Ah batteries. 

In this experimental case study, the two DC power supplies are configured to output 20 V, and two power 

resistors with values of 4.4 Ω and 1.5 Ω are employed, as illustrated in Figure 22(b). This configuration emulates 

a partially shaded PV scenario, resulting in two distinct maximum power points (MPPs) at 68.9 W and 61 W as 

shown in Figures 22 (c). To evaluate the tracking capability under such conditions, the standard GWO and its 

modified version MGWO are selected for performance comparison. 
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Figure 22. The experimental construction (a) The experimental photography (b) The schematic diagram (c) The P-V curve of 

simulated PV circuit. 

 

  

(a) Classical GWO (b) Modified GWO 

  

(c) Classical GWO (d) Modified GWO 

Figure 23. The convergence waveform in the practical experiment under irregular shading conditions, (a) the transient 

waveform of the Classical GWO method, (b) the transient waveform of the Modified GWO method, (c) the steady state 

waveform of the Classical GWO method, (d) the steady state waveform of the Modified GWO method 
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The classical GWO algorithm required approximately 1.2s to converge and locate the global maximum 

power point GMPP, as depicted in Figure 23 (a). It subsequently stabilized at an GMPP of 68 W under 

steady-state conditions, corresponding to an operating voltage of 22 V and a current of 3.08 A, as shown in 

Figure 23 (c). In contrast, the MGWO demonstrated significantly faster convergence, reaching the GMPP in 

about 0.24s, as presented in Figure 23 (b). Following convergence, it delivered approximately 68.7 W to the load 

with enhanced power stability, maintaining an operating voltage of 23.4 V and a current of 2.93 A, as illustrated 

in Figure 23 (d). 

These experimental results highlight the superior performance of the MGWO algorithm, which achieved a 

practical efficiency of 99.56%, demonstrating faster tracking speed and improved steady-state stability. Mean-

while, the classical GWO yielded a lower efficiency of 98.55%, with slower convergence and less stable power 

output during steady-state operation. 

5. Conclusions 

Choosing a high-performance and more effective strategy for the PV system controller to extract the 

maximum available power is very significant during the design process. This study presented a comparative 

analysis of three powerful algorithms in their classical and modified form to choose the highest-performing 

one. These algorithms are the Cuckoo Search Algorithm (CSA), the Grey Wolf Optimization (GWO) algorithm, 

the Particle Swarm Optimization (PSO) algorithm, the Modified Cuckoo Search Algorithm (MCSA), the Modi-

fied Grey Wolf Optimization (MGWO), and the Modified Particle Swarm Optimization (MPSO). The compari-

son was conducted by progressively increasing the complexity of irregular shading on the PV panels to evalu-

ate the algorithm's effectiveness in handling such challenging conditions. The results indicate that the classical 

GWO algorithm has the highest performance compared to the other two classical algorithms due to its effective 

balance between exploration and exploitation. It has a social hierarchy, and the hunting behavior of grey wolves 

(GWO) enables a more structured and adaptive search process. Unlike the PSO algorithm, which can suffer 

from premature convergence and reduced diversity in later stages. Similarly, although CSA utilizes Lévy flights 

to enhance exploration, it lacks the structured convergence exhibited by GWO, which is driven by the collabo-

rative guidance of the alpha, beta, and delta wolves. 

By adding a powerful technique to the classical versions, the modified algorithms consistently outper-

formed the conventional counterparts by effectively minimizing oscillations in PV output power, achieving 

faster convergence to the maximum available power, and enhancing overall tracking efficiency. Among the 

evaluated techniques, the Modified Grey Wolf Optimizer (MGWO) exhibited the best performance, followed by 

the Modified Cuckoo Search Algorithm (MCSA), while the Modified Particle Swarm Optimization (MPSO) 

showed the least favorable results, as indicated by key performance metrics. 

Furthermore, the algorithms were validated in a simulated application involving water pumping using an 

induction motor by using a MATLAB / Simulink program. The results confirmed that the Modified Grey Wolf 

Optimization (MGWO) algorithm led to superior motor performance, characterized by higher rotational speed 

and torque response, compared to the other algorithms. The findings advocate for the use of the Modified Grey 

Wolf Optimization (MGWO) algorithm to enhance PV’s system reliability, power generation, and operational 

stability in renewable energy applications. 
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