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Abstract: Technology on the ascent has no less disturbing our lives as the progres-

sion in digital platforms has not slumped the importance of developing solid secu-

rity key measures to protect a computer system or network from unscrupulous in-

dividuals. This work aims to investigate enhancing programs employed in threat 

identification associated with cybersecurity in the background of the IoT in combi-

nation with the Dipper Throated Optimization (DTO) algorithm and Gradient 

Boosting. The increasing intricacy of information systems and a sharp increase in the 

usage of IoT devices would indicate that technology's need to prevent information 

leakage or data breaches is becoming more critical. Facilitating the management of 

the arising challenges related to optimization problems in the field of cybersecurity 

is the playing ground of metaheuristic optimization algorithms based on the princi-

ples of natural sciences. These algorithms are well described in the literature, and 

this research carefully analyzes and deploys them to carry out feature selection with 

a focus on the IoT cybersecurity context. Specifically, they solve the typically tricky 

combinatorial optimization problem of binary optimization to feature selection to 

pick the most relevant features with the most negligible computation intelligently. 

Another increase in efficiency when applying the cybersecurity framework is when 

it is integrated with machine learning models. For the regression, the following ap-

proaches have been implemented: Gradient Boosting, CatBoost, and XGBoost. Be-

sides, mean squared error (MSE) and the percentage of change in root mean squared 

error (RMSE) were used when comparing these models. The results of this research 

advance the scholarship of optimization in the context of IoT cybersecurity and hold 

practical implications for improved threat detection models' implementation in ap-

plications. Including DTO with Gradient Boosting enhances the attainment of 

high-quality cybersecurity threat detection in IoT, ensuring the value of speeding up 

modified interconnected systems. 
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1. Introduction 

The defense of computer systems and networks from malicious actors is one prominent feature in the com-

plex world of recent technology. Cybersecurity is critical in preventing unauthorized disclosures of infor-

mation and theft of hardware and software [1]. The multi-layered nature of information systems, coupled 

with the widespread adoption and rise in smart devices and technology, including the Internet of Things (IoT) 

[2], increases the difficulties encountered in this domain. Cybersecurity takes on the significance of ensuring 

that the major systems like power distribution, electoral processes and financial systems are secure because 

they have more significant implications beyond their logical response to physical reality [3]. There is an aspect 

beyond the world of cybersecurity where using artificial intelligence (AI) and optimization techniques be-

come helpful in dealing with these problems that cross over [4-5]. Optimization is ubiquitous in all sectors, 

from engineering design to economics and even holiday trip planning [6]. It is essential to properly manage 

several limited resources, whether monetary, time or any other types of assets, to generate optimal results 

[7-8]. Typically, real-world optimization scenarios involve nonlinearity, multimodality, and intricate con-

straints with often conflicting objectives; real-world optimization situations readily optimize this factor to key 

indications while overlooking others. Solving an optimal or sub-optimal problem is quite challenging and 

emphasizes the need for thinking outside the box. 

The ideal innovative solution is using metaheuristic optimization algorithms, each inspired by a specific bi-

ological or natural effect/phenomenon [9-10]. The Sine Cosine Algorithm (SCA), based on the periodic fea-

tures of sine and cosine functions, theory utilizing their periodicity is used when exploring and exploiting the 

search space when it comes to finding pockets between a good solution and Zero value. Natural evolution, 

inspired by the navigation method of moths that utilizes a sort of transverse orientation to optimize solutions, 

is used with Moth-Flame Optimization (MFO) [11-12]. Alternatively, Particle Swarm Optimization adjusts 

candidate solutions step-by-step by imitating particle movement in a search space [13 - 14].The Whale Opti-

mization Algorithm (WOA) mimics the hunting practice of humpback whales in general and its bubble-net 

strategy for them [15]. The Grey Wolf Optimizer replicates grey wolves' leadership structure and hunting 

behaviors and uses alpha, beta, delta, and omega wolves for simulation [16-17]. Finally, the Firefly Algorithm 

(FA) is based on the social behavior of fireflies and offers a distinct optimization approach [18]. Binary opti-

mization for feature selection is a significant technique within the scope of cybersecurity [19]. This approach 

involves choosing the most representative features from a dataset, which is inherently problematic for com-

binatorial optimization [20]. Therefore, binary optimization algorithms, designed to work with binary values 

that can either be 0 or 1, are central in selecting a subset of features that best contribute towards the optimal 

performance of a model, thereby helping reduce complexity during computation [21]. 

Furthermore, machine learning becomes critical for integration into this framework. A subset of AI is machine 

learning, which entails machines' ability to replicate intelligent human behavior, solving intricate issues in a 

way that humans do [22]. These models have included machine learning models, including Gradient Boost-

ing, CatBoost, XGBoost, Linear Regression and Multilayer Perceptron, Random Forest Decision Tree K 

Nearest Neighbours KNN, Extra Trees As a collection of regressive tasks in the new standard patterns of the 

cybersecurity realm [23-25]. 

This introduction paves the way for a detailed investigation into the complex relationship between AI, opti-

mization algorithms, feature selection and machine learning models to improve the efficacy of cybersecurity 

systems. They subsequently discuss the intricacies of related works, materials met, hods, and experimental 

results before concluding the course while identifying avenues for future research. 

The main contributions of this study can be summarized in: 

1. This study significantly contributes to data analysis and investigation, offering a detailed exploration of a 

Kaggle dataset, including malware attacks and visualization through geographical data and scatter plots. 

2. This research deals with feature selection and uses miscellaneous binary optimization algorithms, in-

cluding bDTO, bSCA, bMFO, bPSO, bWAO, bGWO, and bFA for comparison. 



IJT’2025, Vol.05, Issue 02.                                                                   3 of 22 

_______________________________________________________________________________________________ 

3. Fundamental machine learning models, including Gradient Boosting, CatBoost, XGBoost, linear regres-

sion, Multilayer Perceptron, Random Forest, Decision Tree, K-nearest neighbors, and Extra Trees, serve as 

reference models for the evaluation. 

4. The study discusses specific aspects, including brief reviews of specific optimization algorithms, such as 

the Sine Cosine Algorithm, Moth-Flame Algorithm, Particle Swarm Algorithm, Whale Optimization Algo-

rithm, Grey Wolf Optimizer and Firefly Algorithm, as well as the mechanisms and inspiration behind these 

algorithms. 

5. Hyperparameter tuning is performed using Dipper Throated Optimization to improve the effectiveness of 

the GB algorithm in general. 

6. ANOVA and Wilcoxon Tests for Statistics determine performance evaluations and significance tests. 

This manuscript's contributions offer expertise and a relevant literature review of feature selection, ML, and 

optimization algorithms, as well as statistical analysis of cybersecurity and optimization. 

However, while this study proposes a promising approach through the integration of the Dipper Throated 

Optimization (DTO) algorithm with Gradient Boosting for IoT-based cybersecurity threat detection, certain 

limitations should be acknowledged. The evaluation relies on a single dataset, which may not fully represent 

the complexity and diversity of real-world IoT environments, potentially affecting the model’s generalizabil-

ity. Moreover, the computational demands of metaheuristic optimization, along with the risk of overfitting 

due to extensive hyperparameter tuning, may constrain the deployment of the proposed framework in re-

source-limited or real-time applications. These limitations suggest the need for future studies to validate the 

approach across varied datasets, test real-time performance, and explore its adaptability to emerging or ad-

versarial threats. 

The novelty of this work lies in the dual application of the Dipper Throated Optimization (DTO) algo-

rithm—used in its binary form (bDTO) for feature selection and in its continuous form for hyperparameter 

optimization of the Gradient Boosting model. While prior research has employed metaheuristic algorithms in 

isolation, this study uniquely integrates bDTO with a full machine learning pipeline that includes extensive 

model benchmarking and statistical validation using ANOVA and Wilcoxon tests. Moreover, the proposed 

framework demonstrates superior performance compared to several state-of-the-art methods, including 

CatBoost, XGBoost, and other binary optimizers such as bPSO and bGWO. Unlike existing approaches, which 

often neglect either feature selection or model tuning, our methodology addresses both, resulting in a more 

efficient, interpretable, and accurate IoT cybersecurity threat detection system. 

2 Related Works 

In cybersecurity, several researchers depend on excellent and reliable intrusion detection systems for 

IoT-associated devices and distribute heterogeneous devices. A recent work [26] has illustrated the height-

ened need to have a high-speed and reliable intrusion detection system for IoT appliances and bodies that are 

dispersed and distinct. Based on the ideas of Decision Trees, this paper presents an intelligent intrusion de-

tection model and carefully thinks about how to rank security features. Practical application of the model on 

an accurate data set for network intrusion detection systems demonstrates the model's effectiveness. The 

model's ability to predict and find cyberattacks with less computational complexity than traditional machine 

learning methods is supported by performance evaluation metrics like accuracy, precision, recall, and F-score. 

Moving our attention to the smart grid domain [27] emphasizes how vital this cutting-edge power system is 

to have accurate intrusion detection and response systems. Together, a whale optimization algorithm (WOA) 

and an artificial neural network (ANN) are used in this paper to create a new intrusion detection model. Get-

ting the ANN's weight vector to have the most minor mean square error depends on the WOA. This cut-

ting-edge WOA ANN model classifies binary, triple, and multi-class cyberattacks and power system inci-

dents. The WOA-ANN model is better than other commonly used classifiers at dealing with the complex 
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problems of attacks, failure prediction, and failure detection in the smart grid. This was proven by using da-

tabases of power-system attacks as proof. 

Artificial intelligence (AI) is a crucial technology for protecting Internet-connected systems from cyber threats 

due to the Fourth Industrial Revolution, which was discussed in [28]. AI has many uses, and this paper looks 

at some of them. These include machine learning, deep learning, natural language processing, and rule-based 

expert systems modeling. The idea of "AI-driven Cybersecurity" emerges by utilizing these AI techniques, 

promising automated and intelligent solutions that are better than traditional security systems. Insights into 

intelligent computing and AI-based approaches to cybersecurity challenges focus on delivering a compre-

hensive guide for cybersecurity researchers and industry professionals. The transformative role of AI in cy-

bersecurity is further explored in [29], which adds nuance to this story. The fact that it cuts through the daily 

security alerts shows that AI can provide instant insights. One of the main parts of the study is visual analysis, 

which looks at how AI can be used in cybersecurity. There is a close look at how AI has changed the structure 

of cybersecurity law. The paper talks about essential research areas that could significantly impact how AI 

security systems are developed in the future. Examples include face recognition and deep neural networks for 

speech recognition. It uses five evaluation factors and a heat map to show the global landscape of AI applica-

tions in cybersecurity research in a way that has never been seen before. This study is a valuable tool for 

planning and making decisions in the field. 

Using machine learning algorithms in cybersecurity is hard because they can be fooled by adversarial exam-

ples [30]. This paper introduces a novel approach called the brute force attack method to evaluate the ro-

bustness of machine learning classifiers against negative examples in cybersecurity. By being straightforward 

and practical, this method, which operates in a black-box manner, addresses flaws in current harmful attack 

methods. Among the security systems being tested are host intrusion detection, Android malware detection, 

and network intrusion detection systems that use machine learning. Starting with early results, the suggested 

method seems faster at computing and better at protecting against attacks using cutting-edge generative ad-

versarial networks. This makes it a valuable tool for testing different machine learning systems' safety in cy-

bersecurity. The paper then discusses the escalating concern of finding cybersecurity attacks and cyber 

anomalies [31]. The authors present "CyberLearning," a thorough security modeling framework utilizing ar-

tificial intelligence and machine learning techniques. This framework uses correlated feature selection and an 

empirical analysis to find out how well different machine learning-based security models work. The study 

evaluates the effectiveness of ten other classification techniques and an artificial neural network-based model 

for anomaly detection and binary classification for various cyberattacks. These papers use well-known secu-

rity datasets, UNSW-NB15 and NSL-KDD, to try to become a valuable resource for data-driven security 

modeling. They hope to contribute to the changing world of cybersecurity with their insights and findings. 

The security of modern intelligent power grids is a problematic problem addressed in [32] in detailed paper. It 

is suggested that an attack detection model based on machine learning be used because both natural and ar-

tificial events could mess up power systems. In addition to feature construction engineering, the model uses 

data and logs gathered by phasor measurement units (PMUs). As the primary classifier for AdaBoost, Ran-

dom Forest is selected. The evaluation of open source simulated power system data with 37 event scenarios 

shows how well the model works. It beats more than eight new techniques with an accuracy rate of 93.91% 

and a detection rate of 93.6%. This reveals the ability of machine learning to make power systems safer. In the 

context of dynamic data-driven vulnerability assessments, [33] introduces a cognitive cybersecurity approach 

to deal with the problems brought on by large amounts of different types of data in Security Operations 

Centres (SOCs). Because security repositories are often full of various kinds of information and duplicates, 

manual vulnerability assessment methods often produce wrong data. Getting rid of conflicting vulnerability 

reports and preprocessing embedded security indicators are two ideas in the paper that can help you make 

reliable datasets. An ensemble meta-classifier method is introduced to combine different machine learning 

techniques to improve predictive accuracy over single algorithms. The proposed cognitive security method-

ology shows promise by better addressing incompleteness and diversity across cybersecurity alert reposito-

ries. The experimental analysis of actual cybersecurity data sources provides insights into the ability of the 

selective ensemble methodology to infer patterns of computer system vulnerabilities. 
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Table 1 offers an overview of previous works in cybersecurity, paying particular attention to threat detection 

in IoT and other distributed systems. These studies propose machine learning, artificial intelligence, me-

taheuristic optimization algorithms, and advanced methods to improve cybersecurity solutions. From pro-

posing new and efficient intrusion detection systems for IoTs within a short time to developing specific 

models for smart grid security, all these works have highlighted different methodologies and their efficiency 

in handling security threats. AI and machine learning have been vital in enhancing automated and intelligent 

systems, hence enhancing the detection and prevention of cyber threats. In this way, each of the references 

plays a distinctive part in developing new approaches to cybersecurity and proposes ideas and recommen-

dations for further studies and real-life implementations. 

These studies show why advanced technologies, such as machine learning and artificial intelligence (AI), are 

increasingly crucial for improving cybersecurity. New intrusion detection models, practical methods for as-

sessing cyber-attacks, and unified security architectures are all presented in these works. Every contribution 

adds something valuable to the conversation about how cybersecurity constantly changes. As these studies 

show, Internet of Things (IoT) devices can be vulnerable differently. On the other hand, they also demonstrate 

how security solutions for smart grids can be improved. Cybersecurity is getting harder to handle because 

computers are becoming more complicated and weak. To overcome this problem, we need technologies that 

work well with each other and are advanced enough to adapt to new issues that come up with different 

computer parts. 

 

Table 1: Summary of Related Works in Cybersecurity and IoT 

Ref 
Focus 

Area 

Key Contribu-

tions 

Meth-

ods/Algorit

hms Used 

Results 

pub-

lica-

tion 

date 

Limitation 

[26] 

IoT In-

trusion 

Detection 

Development 

of fast and re-

liable intru-

sion detection 

systems for 

IoT devices 

Decision 

Trees 

Demonstrated 

effectiveness in 

predicting and 

finding cyberat-

tacks with lower 

computational 

complexity 

2021 

No optimiza-

tion or feature 

selection 

techniques 

used 

 

[27] 

Smart 

Grid In-

trusion 

Detection 

Creation of an 

intrusion de-

tection model 

for smart grids 

Whale Opti-

mization Al-

gorithm 

(WOA), Arti-

ficial Neural 

Network 

(ANN) 

Effective in clas-

sifying binary, 

triple, and mul-

ti-class cyberat-

tacks and power 

system incidents 

2020 

Limited to 

smart grid 

context; no 

comparative 

model testing 

[28] 

AI in 

Cyber-

security 

Examination 

of AI-driven 

cybersecurity 

approaches 

Machine 

Learning, 

Deep Learn-

ing, Natural 

Language 

Processing, 

Rule-based 

Expert Sys-

tems 

Highlighted AI 

techniques for 

automated and 

intelligent cyber-

security solutions 

2021 

Theoretical; 

lacks empiri-

cal evaluation 

or optimiza-

tion focus 
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[29] 

AI Ap-

plica-

tions in 

Cyber-

security 

Exploration of 

AI's trans-

formative role 

in cybersecu-

rity 

Visual 

Analysis, 

AI Law 

Provided in-

sights into AI's 

impact on cy-

bersecurity law 

and instant in-

sights from se-

curity alerts 

2019 

Focused on 

legal and pol-

icy context; 

lacks technical 

solution 

[30] 

Adver-

sarial 

Machine 

Learning 

Evaluation of 

machine 

learning clas-

sifiers' ro-

bustness 

against ad-

versarial ex-

amples 

Brute Force 

Attack 

Method 

Showed im-

proved protec-

tion against at-

tacks using 

generative ad-

versarial net-

works 

2020 

No feature 

selection or 

metaheuristic 

application 

[31] 

Cyber 

Attack 

Detection 

Development 

of a security 

modeling 

framework 

using AI and 

machine 

learning 

Cyber-

Learning, 

Correlated 

Feature Se-

lection, 

Empirical 

Analysis 

Evaluated the 

effectiveness of 

classification 

techniques and 

ANN-based 

models for 

anomaly detec-

tion 

2021 

Generic mod-

els; no opti-

miza-

tion-enhanced 

approaches 

[32] 

Intelli-

gent 

Power 

Grids 

Machine 

learn-

ing-based at-

tack detection 

model for 

power grids 

AdaBoost, 

Random 

Forest, 

Phasor 

Measure-

ment Units 

(PMUs) 

Achieved high 

accuracy 

(93.91%) and 

detection rate 

(93.6%) in 

power system 

security 

2019 

Do-

main-specific; 

not applicable 

to broader IoT 

settings 

[33] 

Cogni-

tive Cy-

bersecu-

rity 

Cognitive ap-

proach to 

vulnerability 

assessment in 

SOCs 

Ensemble 

Me-

ta-Classifie

r, Data 

Prepro-

cessing 

Improved pre-

dictive accura-

cy and ad-

dressed issues 

of data incom-

pleteness and 

diversity in 

security alerts 

2021 

Does not ad-

dress 

IoT-specific 

architecture or 

constraints 

 

 

3. Materials and Methods 

The following section gives details on the research design used in this study. The study is based on an exten-

sive dataset solely targeted to cybersecurity threat identification; this dataset is used to predict and test the 

different machine learning solutions and the Dipper Throated Optimization (DTO) algorithm. Information 

related to the dataset and DTO algorithm, types of ML models, and gradient-boosting hyperparameter opti-

mization is also discussed. 



IJT’2025, Vol.05, Issue 02.                                                                   7 of 22 

_______________________________________________________________________________________________ 

To clarify the integration of components in our framework, a methodological flowchart is introduced (see 

Figure 1. The process begins with the acquisition and preprocessing of the cybersecurity dataset, which in-

volves normalization and the handling of missing or categorical values. Following this, binary feature selec-

tion is performed using the Binary Dipper Throated Optimization (bDTO) algorithm. This step reduces data 

dimensionality while retaining informative attributes relevant to cybersecurity threat detection. 

Once the optimal feature subset is selected, the dataset is partitioned into training and testing sets. A suite of 

machine learning models—including Gradient Boosting, CatBoost, XGBoost, and others—is then trained us-

ing the selected features. Specifically, the Gradient Boosting model is further optimized through hyperpa-

rameter tuning with the original DTO algorithm to enhance predictive performance. Finally, model perfor-

mance is evaluated using standard regression metrics such as MSE, RMSE, and R², along with statistical val-

idation using ANOVA and Wilcoxon tests. This integrated pipeline ensures both high accuracy and statistical 

robustness in identifying cyber threats across IoT systems. 

 
Figure 1: Flowchart of the proposed cybersecurity threat detection framework 

3.1 Dataset 

The prerequisite of our work is the accurate dataset collected from Kaggle [34] using the filtration process 

required for cybersecurity threat detection. This specific data set comprises a range of aspects that help com-

prehend and prevent possible cyber risks. The structure of analyzed dataset involves characteristics like 

Timestamp, Source IP Address, Destination IP Address, Source Port, Destination Port, Protocol, Packet 

Length, Packet Type, Traffic Type, Payload Data, Malware Indicators, Anomaly Scores, Alerts/Warnings, and 

Attack Type This range of features allows including the optimization algorithms and machine learning defi-

nitions into a comprehensive understanding of the research contributing the solidity and relevance of the 

results gained. 

The data allows for the plotting of the distribution of malware attacks by region, as shown in Figure 2. This 

geographical distribution offers valuable insights that can aid in understanding the prevalence of cyber 

threats in specific regions with high attack rates. Recognizing the geographical aspect of these threats is 

therefore vital for devising accurate protective measures for cyberspace and enhancing the efficiency of threat 

identification mechanisms. 
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     Figure 2: Malware Attack by location 

Figure 3 presents the Scatter and Density Plot visualization of the distribution of packet lengths based on the 

attack type. This visualization aids in identifying patterns and establishing relationships between different 

attacks and their properties. By comparing the general distribution of packet lengths with other abnormal 

behaviors associated with specific cyber threats, researchers can effectively select the appropriate feature and 

model for subsequent stages of the study. 

 
  Figure 3: Distribution of Packet length by Attack Type 

Figure 4 shows the quantity and frequency of cyber-attacks from 2020 to 2023. The temporal analysis yields 

information about the cyclical occurrence of threats and their frequency, which helps in understanding areas 

of higher risks and the efficacy of measures implemented. Such information is valuable for planning future 

preventive measures and distributing resources in the context of cybersecurity. 
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     Figure 4: Monthly Attacks from 2020 to 2023 

These visualizations above help us understand the dataset as a whole and provide insight into the different 

aspects of the data. Attributes significant for describing the structures and dependence necessary for con-

structing threat detection and prevention schemes are disclosed from geographical distributions, temporal 

trends, and data properties. It is then possible to identify regions or countries most vulnerable to the partic-

ular type of attack, study the activities and abnormalities linked to the various threats, and analyze patterns 

and oscillations of attacks over time. This examination is essential in data exploration to guarantee that the 

formulated cybersecurity plans are optimally suitable. These visualizations help enhance the threat detection 

models and promote proper and effective cybersecurity mechanisms. 

3.2 Machine Learning Basic Models 

Powerful algorithms form a multi-model machine learning approach to achieve the best performance while 

addressing the cybersecurity threat detection problem. Table 2 below demonstrates the type of machine 

learning models used in this study: All the models have unique skills for improving Cybersecurity Threats’ 

detection efficiency and reliability. These models are incorporated with the DTO algorithm to enhance the 

threat detection systems. 

Table 2: Machine Learning . Models 

Model Technique Features Benefits Reference 

Gradient 

Boosting 

Boosting technique that 

builds sequential models 

Corrects errors 

of predecessor 

models 

Minimizes overall pre-

diction error by setting 

target outcomes for each 

subsequent model 

[35] 

CatBoost Gradient boosting variant Handles cate-

gorical and 

numerical fea-

tures seam-

lessly 

Eliminates need for fea-

ture encoding tech-

niques; introduces SWQS 

algorithm to handle 

missing values; reduces 

overfitting and enhances 

overall performance 

[36] 
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Model Technique Features Benefits Reference 

XGBoost Gradient-boosting decision 

trees 

Robust imple-

mentation 

Famous for optimizing 

machine learning models 

[37] 

Linear 

Regres-

sion 

Predictive analysis technique Predicts the 

value of the 

dependent 

variable based 

on an inde-

pendent varia-

ble 

Fundamental for under-

standing relationships 

between variables 

[38] 

Multi-

layer 

Percep-

tron 

(MLP) 

Versatile model used in var-

ious machine learning tech-

niques 

Adequate for 

classification 

and regression 

tasks 

Known for providing 

highly accurate results in 

classification problems 

[39] 

Random 

Forest 

Ensemble learning method Constructs 

multiple deci-

sion trees dur-

ing training 

Output determined by 

majority class selected by 

most trees 

[40] 

Decision 

Tree 

Non-parametric supervised 

learning algorithm 

Used for both 

classification 

and regression 

tasks 

Hierarchical structure 

with root nodes, branch-

es, internal nodes, and 

leaf nodes 

[41] 

K-Neares

t Neigh-

bors 

(KNN) 

Classification and regression 

technique 

It relies on the 

principle that 

similar data 

points have 

similar labels 

or values. 

Stores the entire training 

dataset as a reference 

during the training phase 

[42] 

Extra 

Trees 

Ensemble supervised ma-

chine learning method 

Utilizes ex-

tremely ran-

domized trees 

Employed for classifica-

tion and regression tasks; 

contributes to overall 

model robustness 

[43] 

 

 

Altogether, these machine learning models are a versatile portfolio. Each method compensates for the other’s 

weaknesses and possesses unique features that help to improve the cybersecurity threat detection process. 

The following sections will map these models to the DTO algorithm, where the effects on the enhancement of 

threat detection systems will be illustrated. 

3.3 Dipper Throated Optimization Algorithm  

The throated Optimization (DTO) algorithm [44-45] is one of the metaheuristic optimization techniques for 

solving complex optimization problems based on the navigation behaviors of the dipper and other foraging 

aquatic bird families having a particular throat. In our view, it forms a basis for our research on the method-

ology of developing more robust protection from cybersecurity threats. The DTO Algorithm described in 
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Algorithm 1 is devised to include tolerance and capability to solve a broad range of optimization problems 

related to cybersecurity threat identification. 

 

In our research framework, the algorithm's flexibility provides a powerful tool for dealing with some very 

complex problems associated with threat detection in cybersecurity.  

3.4 Gradient Boosting Hyperparameter Tuning 

The Gradient Boosting algorithm entails fine-tuning several parameters to improve performance. These hy-

perparameters are rather important because they govern different facets of the learning process and the con-

struction of the model as a whole; this influences the accuracy, speed, and generalization capability of the 

model on unseen data sets immensely. These parameters should, therefore, be fine-tuned to give the desired 

results of the algorithm suitable for the specific data sets and the problems encountered. Tuning hyperpa-

rameters avoid overtraining and increases the model generalization capacity and a better predictive capabil-

ity. 

Table 3 presents the values for the tree-specific parameters that were set to determine the gradient boost. 

These parameters are useful in managing overfitting and the proper management of split in the decision trees. 

Thus, they help shape a solid and not-depth model, regulating the necessary parameters of the trees. 

 

 

 

 

Algorithm 1: Dipper Throated Optimization Algorithm  

Initialization positions BPi (i = 1, 2, . . . , n) with size n, 

velocities BVi (i = 1, 2, . . . , n), total number of iterations Tmax, 

fitness function fn, c, C1, C2, C3, C4, C5, r1, r2, R, t = 1 

Calculate objective function fn for each bird BPi 

Find the best bird BPbest 

      While t ≤ Tmax do 

           for (i = 1: i < n + 1) do 

                  if (R < 0.5), then 

                        Update the position of the current swimming bird as 

                         BPnd (t + 1) = BPbest(t) - C1.|C2.BPbest(t) - BPnd(t)| 

                   else 

                     Update the velocity of the current flying bird as 

                     BV (t + 1) = C3BV(t) + C4r2(BPbest(t) - BPnd(t)) + C5r2(BPGbest - BPnd(t)) 

                     Update the position of the current flying bird as 

                     BPnd (t + 1) = BPnd(t) + BV(t + 1) 

                   end if 

           end for 

        Calculate objective function fn for each bird BPi 

        Update c, C1, C2, R 

        Find the best bird BPbest 

        Set BPGbest = BPbest 

        Set t = t + 1 

Return the best bird BPGbest 
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Table 3: Tree-Specific Parameters 

Parameter Description 

min_samples_split Specifies the minimum number of samples required in a node. 

min_samples_leaf The minimum samples required in a terminal node or leaf. 

min_weight_fraction_leaf It is defined as a fraction of the total number of observations. 

max_depth Sets the maximum depth of a tree to control overfitting. 

max_leaf_nodes Limits the maximum number of terminal nodes or leaves in a tree. 

max_features Defines the number of features considered while searching for the 

best split. 

 

Table 4 represents the boosting parameters used to decide the sequential modeling and even the contribution 

of each tree in the gradient-boosting textual algorithm. These parameters have a strong influence on the 

model complexity and capacity to learn the data while avoiding overfitting. 

Table 4: Boosting Parameters 

Parameter Description 

learning_rate Governs the impact of each tree on the outcome. 

n_estimators Specifies the number of sequential trees to be modeled. 

subsample Represents the fraction of observations to be selected for each tree. 

 

Table 5 below indicates the miscellaneous parameters used in tuning the Gradient Boosting algorithm. These 

parameters offer extra regulation concerning the training process and will alter the efficiency of the model 

training in some way. Knowledge of these parameters is essential for the best operations of the GB algorithm. 

Table 5: Miscellaneous Parameters 

Parameter Description 

loss Refers to the loss function to be minimized in each split. 

Init Affects the initialization of the output. 

random_state The random number seed ensures reproducibility. 

verbose Dictates the type of output generated during the model fitting process. 

warm_start Allows additional trees to be fitted on the previous model fit. 

presort Determines whether to presort data for faster splits. 
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These parameters are very important in enhancing the efficiency of the GB algorithm, and hence, it is neces-

sary to understand them. The next sections of the paper will explain how this DTO is incorporated with ML 

models and how it impacts the system's general performance. 

4 Experimental Results 

In this research study, we initially used the binary Dipper Throated Optimization (bDTO) for the feature se-

lection. After this, we fine-tuned the cybersecurity threat detection using Dipper Throated Optimization 

(DTO) with Gradient Boosting. It was then compared to other metaheuristic optimization algorithms to assess 

the efficiency of the said approach. The results are shown in tables and figures, which makes it possible to 

understand the specifics of the interaction between feature selection methods and machine learning models. 

4.1 Feature Selection Results  

This paper focuses on feature selection in machine learning models, stating that feature selection is one of the 

most critical components that determine the performance of a machine learning model. The following table 

presents feature selection measures for different optimization algorithms. These are the average error, the 

average selected size, and the fitness indicators; the latter is indispensable for evaluating the efficacy of the 

algorithms in feature selection. Thus, having assessed the above-shown parameters, it is possible to identify 

comparative advantages and disadvantages of each of the algorithms and consequently choose the method 

most efficient for cybersecurity threat detection. 

The average errors show how effectively each algorithm reduces wrong feature sets, and the average size of 

the selected set reveals the number of chosen features, which influences the model’s complexity and reada-

bility. Average and worst fitness indicators represent the overall quality and stability of the feature selection 

process. Therefore, this Table serves as a conclusion for the initial assessment of an FCA. 

Table 6: Results of the Feature Selection on the tested dataset 

 bDTO bSCA bMFO bPSO bWAO bGWO bFA 

Average error 0.64793 0.66513 0.67873 0.69893 0.69873 0.68523 0.69733 

Average Select size 0.60073 0.80073 0.74313 0.80073 0.96413 0.72353 0.83523 

Average Fitness 0.71113 0.72733 0.73873 0.72573 0.73353 0.73343 0.77763 

Best Fitness 0.61293 0.64763 0.64203 0.70603 0.69763 0.71123 0.69633 

Worst Fitness 0.71143 0.71453 0.75713 0.77373 0.77373 0.78743 0.79393 

Standard deviation Fit-

ness 
0.53343 0.53813 0.53973 0.53753 0.53973 0.53873 0.57433 

Figure 5 shows the performance of different feature selection techniques, comparing their accuracy levels. 

Such a chart facilitates comparing the results to identify which algorithms are more efficient in feature selec-

tion and provide the highest accuracy of the relevant features. In this way, the figure helps recognize which 

algorithm can be regarded as the most efficient in practice and offers clear references for further improve-

ment and creation of another model. 
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Figure 5: Accuracy investigation of various Feature Selection methods. 

Further, compared with several other algorithms, including STDC, MoC, and Deep MRI, we plot the residual 

values and the heatmap for the bDTO algorithm in Figure 6. This visualization aids in visualizing the residu-

al distribution and comparing each algorithm’s efficacy to bDTO in feature selection. The residual values 

show how the predicted and the actual values differ, and the heatmap displays the variation across the nu-

merous algorithms. Hence, from the figure, the researchers can capture the stability and reliability of each 

feature selection method; bDTO obtained minimum residual compared with other techniques proposed for 

lung cancer diagnosis. 

Figure 6: Residual Values and Heatmap for the proposed bDTO algorithm and other algorithms 

Table 7 shows the ANOVA statistical values using the bDTO feature selection and the compared algorithms. In this 

analysis, the Sum of Squares (SS), Degrees of Freedom (DF), Mean Squares (MS), F-statistic, and p-value are necessary to 

comprehend the differences and variations of the several feature selection methods used. 
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The ANOVA results also show how different the values are from other algorithms, which is an essential 

method of comprehensive comparison of the bDTO algorithm’s performance. The F-statistic is high and the 

P-value low, which means that bDTO has effectively increased the results, and therefore, the improvements 

registered cannot be attributed to external and random factors. 

Table 7: ANOVA statistical results based on the bDTO and compared algorithms 

ANOVA table SS DF MS F (DFn, DFd) P value 

Treatment (be-

tween columns) 0.02228 6 0.003714 

F (6, 63) = 

102.2 

P<0.000

1 

Residual  

(within col-

umns) 0.002289 63 0.00003633     

Total 0.02457 69       

 

Table 8 below depicts the Wilcoxon Signed Rank Test of the selected bDTO features and the compared algo-

rithms. It presents the sum of the signed ranks, the positive ranks, the hostile ranks and the two-tailed 

p-value, which offers insight into how the paired samples tested differ in terms of the non-parametric 

Mann-Whitney U test. 

Delving deep into the results, the p-value below 0.01 infuses more credence as to the substantial deviation in 

performance courtesy of the bDTO algorithm. The Wilcoxon test, being a nonparametric test, also indicates 

that the improvements with bDTO are indeed statistically significant and are unaffected by outliers or 

non-gaussian distributions. 

Table 8: Wilcoxon Signed Rank Test statistical results for the bDTO Feature Selection and compared algorithms 

Wilcoxon Signed Rank 

Test bDTO bSCA bMFO bPSO bWAO bGWO bFA 

The sum of signed ranks 

(W) 55 55 55 55 55 55 55 

The sum of positive ranks 55 55 55 55 55 55 55 

The sum of hostile ranks 0 0 0 0 0 0 0 

P value (two-tailed) 0.002 0.002 0.002 0.002 0.002 0.002 0.002 

Is it exact or an estimate? Exact Exact Exact Exact Exact Exact Exact 

P value summary ** ** ** ** ** ** ** 

Significant (alpha=0.05)? Yes Yes Yes Yes Yes Yes Yes 

How big is the discrep-

ancy?               

Discrepancy 0.6479 0.6651 0.6787 0.6989 0.6987 0.6852 0.6973 
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4.2 Basic Machine Learning Models Results 

Table 9 illustrates the basic machine learning models’ performance metrics on the dataset. Different measuring 

scales, such as MSE, RMSE, MAE, and similar, are therefore valued to assess the accuracy of all the models. 

Gradient Boosting, CatBoost and XGBoost models are highlighted as prospective since they can serve as a 

reference for comparison. The table's versatility enables the competition of each model, with specific values 

mentioning the areas of strength and areas where the given model can be improved. 

Table 9: Results of the basic machine learning models on the tested dataset 

Models MSE RMS

E 

MAE MBE r R2 RRM-

SE 

NSE WI Fitted 

Time 

GradientBoost-

ing Regressor 

0.073

7 

0.271

5 

0.228

1 

-0.027

5 

-0.168

1 

0.028

3 58.3855 

-0.015

2 

0.496

2 0.0030 

Cat Boost 

0.077

1 

0.277

8 

0.232

6 

-0.031

4 

-0.144

7 

0.020

9 59.7337 

-0.062

6 

0.486

2 

11.639

6 

SVR 

0.077

6 

0.278

5 

0.233

2 

-0.012

4 

-0.131

5 

0.017

3 59.8906 

-0.068

2 

0.484

9 0.9253 

XGBoost 

0.078

3 

0.279

7 

0.237

9 

-0.027

9 

-0.170

0 

0.028

9 60.1597 

-0.077

8 

0.474

4 

11.658

6 

Linear Regres-

sion 

0.079

6 

0.282

1 

0.236

9 

-0.026

8 

-0.094

1 

0.008

8 60.6754 

-0.096

4 

0.476

8 0.0147 

MLP Regressor 

0.081

9 

0.286

2 

0.236

2 

-0.025

7 

-0.038

6 

0.001

5 61.5577 

-0.128

5 

0.478

2 5.7622 

Random Forest 

Regressor 

0.083

7 

0.289

3 

0.248

3 

-0.038

8 

-0.104

1 

0.010

8 62.2088 

-0.152

5 

0.451

6 1.3258 

Decision Tree 

Regressor 

0.085

8 

0.292

9 

0.243

5 

-0.027

8 

-0.110

1 

0.012

1 62.9836 

-0.181

4 

0.462

2 0.1929 

K Neighbors 

Regressor 

0.088

2 

0.297

0 

0.249

8 

-0.015

3 

-0.169

4 

0.028

7 63.8632 

-0.214

6 

0.448

3 0.0373 

Extra Trees Re-

gressor 

0.089

6 

0.299

3 

0.248

5 

-0.029

4 

-0.187

0 

0.035

0 64.3618 

-0.233

6 

0.451

1 0.0030 

 

4.3 Optimization Results 

Figure 7 presents the visual analysis of the accuracy related to research on DTO-Gradient Boosting and rela-

tively more related algorithms. The given chart provides a clear vision of accuracy distribution, and once 

again, DTO-Gradient Boosting is in the leading position among other models. This kind of visualization 

helps understand the DTO-Gradient Boosting model's relative effectiveness and comprehend the optimiza-

tion process's effects on the model’s accuracy. 
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Figure 7: RMSE of DTO-GradientBoostingRegressor and compared algorithms 

Figure 8 shows the histogram analysis of the accuracy of the implementation of DTO-Gradient Boosting and 

compared methods. This histogram aims to present the frequency of accuracy values, thus demonstrating 

how DTO has the potential to focus on highly accurate points. The result again confirms that DTO contrib-

utes positively to the optimization aspect of the gradient-boosting model. Based on the above figure, it is ev-

ident that the DTO-Gradient Boosting model is reliable and always has high accuracy, which makes it ap-

pealing for cybersecurity threat detection. 

 

Figure 8: The Histogram of accuracy for DTO-GradientBoostingRegressor and other algorithms 
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Table 10 encapsulates the performance and evaluation metrics summary for the DTO-Gradient Boosting 

model and the related comparison strategies. Statistical values like minimum, maximum, and Average give 

an indication of the variability and stability of the overall performance and models’ performance. Using sta-

tistical measures that signify the DTO-Gradient Boosting model's credibility and efficiency is also helpful in 

establishing its degree of performance. 

Table 10: Overview of the performance metrics of DTO-GradientBoostingRegressor models and compared al-

gorithms on the tested dataset 

 DTO SCA MFO PSO WAO GWO FA 

# of values 10 10 10 10 10 10 10 

Min. 0.001446 0.01058 0.02036 0.03516 0.03346 0.04812 0.05067 

Median 0.001846 0.01358 0.03365 0.04157 0.04457 0.05124 0.06671 

Max. 0.001995 0.02336 0.04004 0.04716 0.05046 0.05612 0.08367 

Mean 0.00182 0.01426 0.03296 0.04149 0.04364 0.0513 0.0674 

Std. Deviation 0.000139 0.003334 0.004859 0.002834 0.004299 0.001966 0.00799 

 

The statistical values of the ANOVA test concerning the chosen DTO-Gradient Boosting model and the 

comparison of the algorithms are presented in Table 11. This F-statistic is relatively high (p < 0. 0001) and 

supports the considerable difference in the performance of the two groups. This table gives a response of an-

other type with statistical significance based on comparing the performance of the DTO Gradient Boosting 

and other algorithms. The significance of the findings is provided by the ANOVA results, which make the 

credibility of the change observed evident. 

 

Table 11: ANOVA statistical results for the DTO-Gradient Boosting Regressor and other algorithms 

 SS DF MS F (DFn, DFd) P value 

Treatment (be-

tween columns) 

0.02959 6 0.004931 F (6, 63) = 

267.4 

P<0.0001 

Residual 

(within col-

umns) 

0.001162 63 0.0000184

4 

  

Total 0.03075 69    

 

Wilcoxon Signed Rank Test was conducted about DTO-Gradient Boosting (RMSE) and other algorithms, as 

shown in Table 12. The p-values for the tests are quite low at 0. 002 which shows that there are differences in 

the performances and confirms the findings from earlier tests whereby DTO-Gradient Boosting has the best 

performance. Wilcoxon test results also make up supporting evidence of the DTO-Gradient Boosting model 

for maximizing machine learning models for cybersecurity threat detection. 
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Table 12: Wilcoxon Test results for the DTO-Gradient Boosting Regressor and other algorithms 

Wilcoxon Signed Rank Test DTO SCA MFO PSO WAO GWO FA 

Sum of signed ranks (W) 55 55 55 55 55 55 55 

The sum of positive ranks 55 55 55 55 55 55 55 

Sum of negative ranks 0 0 0 0 0 0 0 

P value (two-tailed) 0.002 0.002 0.002 0.002 0.002 0.002 0.002 

Is it exact or an estimate? Exact Exact Exact Exact Exact Exact Exact 

P value summary ** ** ** ** ** ** ** 

Significant (alpha=0.05)? Yes Yes Yes Yes Yes Yes Yes 

How big is the discrepancy?               

Discrepancy 

0.001

846 

0.013

58 

0.03365 0.04157 0.04457 0.05124 0.06671 

 

Lastly, Figure 9 demonstrates the residual values and the heatmap of the proposed algorithm alongside oth-

er algorithms in conjunction with gradient boost optimization. The heatmap offers a visually appealing way 

to view the residual distribution, thus stressing the versatility and credibility of DTO as an enhancing tool of 

the gradient-boosting model. The figure demonstrates how DTO helps reduce the amount of residuals and, 

as a result, can be beneficial for boosting the performance of cybersecurity threat detection models. 

 

Figure 9: Residual Values and Heatmap for the proposed DTO algorithm and other algorithms 

When comparing the DTO by way of the range and P values related to the various performance indicators 

and statistical tests, the efficacy and resilience of this work can be seen to be very high. Thus, it contributes to 

it being considered a valuable resource that might enhance the accuracy of the models used in machine 
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learning and help in threat recognition more efficiently. The subsequent sections of this paper will provide a 

preview of these results and offer directions for future work that might be helpful to scholars working in 

cyber defense and metaheuristic algorithms. 

3. 5. Conclusions 

In summary, this study researches the Binary Dipper Throated Optimization algorithm as an intelligent In-

tegration component to find characteristics in optimizing the Gradient Boosting model for cybersecurity 

threat detection. Overall, bDTO operates in two modes. It turns out to be very fruitful when dealing with 

large datasets as this binary nature considerably increases the precision levels of features chosen for analysis. 

Based on a comparison with various performance metrics, Binary Dipper Throated Optimization consistently 

outperforms other algorithmic solutions. Besides the above, this study emphasizes how Dipper Throated 

Optimization techniques can be widely applicable in enhancing Gradient Boosting algorithms. In as signifi-

cant a contribution to the optimization of machine learning models in cybersecurity, there is showcased here 

one potential capacity that harnesses from using the strengths, particularly its latent balance that comes about 

due to how it explores and exploits patterns within any given search space utilizing DTO. For future inves-

tigations, researchers could take this concept further and study the intricate capabilities of Dipper Throated 

Optimization because it focuses on binary optimization. Also, further studies could concentrate on even more 

complicated features of binary Dipper Throated Optimization and investigate how this algorithm can be 

adapted for different datasets related to cybersecurity. Furthermore, further studies of Dipper Throated Op-

timization methodologies would probably reveal new and novel ways in which a diverse array of machine 

learning algorithms might be optimized other than by Gradient Boosting. This research paves the foundation 

for future optimization methods and cybersecurity development with a platform that facilitates further in-

novations and practical use.In future work, adapting the DTO-Gradient Boosting framework for real-time 

deployment on resource-constrained IoT edge devices will be essential. This includes exploring lightweight 

variants of DTO or simplified optimization schemes that reduce computational demands. To improve 

adaptability, future research should also incorporate online learning techniques or adaptive mechanisms that 

can handle concept drift and evolving cyber threat patterns. Additionally, evaluating the system's robustness 

against adversarial attacks and deploying it in live IoT environments through pilot studies will be critical 

steps toward real-world implementation. These directions will help ensure the model's scalability, resilience, 

and operational feasibility. 
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