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Abstract: This research presents a deep learning approach designed for the automated 

detection of pneumonia through the analysis of chest X-ray images. Pneumonia remains 

the foremost infectious cause of mortality in children under five years old, leading to the 

deaths of 740,180 children globally in 2019. This statistic represents 14% of all deaths 

within this demographic. This alarming statistic underscores the necessity for improved 

diagnostic methods, particularly in environments with limited resources where special-

ized radiologists may not be readily available. automating the detection of pneumonia 

from the analysis of chest X-ray images, specifically focusing on a dataset comprised of 

5,863 images categorized as either pneumonia or normal. This dataset, obtained from 

pediatric patients between the ages of one and five years at the Guangzhou Women and 

Children’s Medical Center, was subjected to stringent quality control measures to elimi-

nate low quality images, ensuring high diagnostic accuracy. This methodology includes 

an extensive preprocessing pipeline featuring resizing, grayscale conversion, normaliza-

tion, and data augmentation techniques to enhance the robustness of the model. The ar-

chitecture employed consists of a Convolutional Neural Network with seven convolu-

tional blocks designed to obtain hierarchical characteristics from the input images. The 

model achieved an accuracy of 97%, with precision and recall values of 0.975 and 0.977 

respectively, indicating its efficacy in distinguishing between pneumonia and normal 

cases. The analysis of the model’s performance was further substantiated through confu-

sion matrices and detailed classification reports, demonstrating minimal misclassifica-

tions. While the results are promising, The limitations of the dataset’s scope and the ne-

cessity for further validation across diverse clinical environments. Future work will aim to 

expand the model’s capabilities to differentiate between various pneumonia types and 

enhance its integration into clinical workflows. By addressing the pressing need for timely 

and accurate pneumonia diagnoses, this research contributes valuable insights toward 

improving healthcare outcomes for vulnerable pediatric populations. 
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1. Introduction 

Pneumonia continues to be a major global health issue, especially affecting at-risk groups such as children un-

der the age of five. As the leading infectious cause of mortality in this age group, claiming hundreds of thou-

sands of lives annually according to WHO [1], the need for rapid and accurate diagnostic tools is paramount, 

especially in resource-limited environments where the availability of specialized radiologists is restricted. This 

paper presents a deep learning approach for pneumonia discovery from chest X-ray images Trivedi and Gupta 
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[2] and Acharya and Satapathy [3], aiming to contribute towards improved and timely diagnosis Kale et al. [4]. 

This study leverages a dataset of 5,856 pediatric chest X-ray images classified into two categories: normal or 

pneumonia, obtained from retrospective cohorts at the Guangzhou Women and Children’s Medical Center. 

While presenting a class imbalance reflective of real-world clinical scenarios, this dataset provides a valued 

resource for training and evaluating deep learning models. We employ a comprehensive preprocessing pipe-

line, including resizing, grayscale conversion, normalization, and data augmentation techniques, to increase the 

model's resilience and capacity for generalization. The core of the proposed system is a Convolutional Neural 

Network architecture tailored for binary classification. This CNN comprises seven convolutional blocks, each 

integrating convolutional layers, ReLU activation, max-pooling, and dropout for regularization. This architec-

ture allows the network to progressively extract hierarchical features from the input images, ranging from 

lower-level details like edges and textures to higher-level representations such as shapes and patterns Rajara-

man et al. [5]. The model performance is rigorously evaluated using a range of metrics including precision, re-

call, F1-score, and accuracy (see 6 Results). We also utilize confusion matrices and classification reports to pro-

vide a comprehensive breakdown of the model’s performance on both base and augmented test data. Findings 

show cases the efficacy of the proposed model in accurately distinguishing between normal and pneumonia 

cases. While the results are encouraging, we acknowledge limitations regarding the dataset’s scope and the 

need for further validation in various clinical settings. Future research will focus on extending the model’s ca-

pabilities to differentiate between various pneumonia types Gupta et al. [6] and Hammoudi et al. [7] and 

seamlessly integrating it into clinical workflows Kale et al. [4]. By addressing the pressing need for timely and 

accurate pneumonia diagnosis, this research contributes to advancing the application of deep learning in 

healthcare and ultimately improving patient outcomes Kermany et al. [8]. 

2. Literature Review 

The automatic detection of pneumonia from chest X-ray images has been an active area of research, driven by 

the significant global health impact of the disease and the potential for automated systems to assist radiologists 

in diagnosis. This review examines the evolution of pneumonia detection methodologies, from traditional im-

age processing techniques to the current state-of-the-art deep learning approaches. We will explore the 

strengths and limitations of various methods, highlighting the progression towards more accurate, efficient, 

and interpretable diagnostic tools. 

2.1. Traditional Image Processing and Machine Learning Methods 

Before the rise of deep learning, pneumonia detection relied heavily on image processing techniques combined 

with traditional machine learning algorithms. These methods typically involved a multi-stage pipeline: 

1. Image Preprocessing: This crucial step aims to augment the quality of chest X-ray images and prepare 

them for further analysis. Common preprocessing techniques included noise reduction, contrast enhancement, 

and lung segmentation. Accurate lung segmentation was particularly important to isolate the region of interest 

and minimize the influence of irrelevant anatomical structures on feature extraction. 

2. Feature Extraction: Handcrafted features were meticulously designed to capture characteristics of 

pneumonia in X-ray images. These features could be categorized into: 

a. Texture features: These features describe the local variations in pixel intensity within the lung 

regions. Examples include Gray-Level Co-occurrence Matrix (GLCM) features Shanmugam and 

Dinstein [9], Local Binary Patterns (LBP) Ojala, Pietik¨ainen, and Maenpaa [10], and Gabor filters 

Jain and Farrokhnia [11]. 

b. Shape features: These features captured the geometrical properties of lung abnormalities associ-

ated with pneumonia, such as area, perimeter, circularity, and aspect ratio 

c. Intensity-based features: These features analyzed the distribution of pixel intensities within the 

lung regions, including mean, standard deviation, skewness, and kurtosis. 

3. Classification: Based on the attributes that were identified, pictures were classified as either normal or 

having pneumonia using conventional machine learning techniques. Support Vector Machines (SVMs) 
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Cortes and Vapnik [12], Random Forests Breiman [13], and k-Nearest Neighbors (k-NN) Cover and Hart 

[14] were among the frequently used classifiers. 

Studies like Monnier-Cholley et al. [15] and Abe et al. [16] employed variations of these pipelines, achieving 

moderate success. However, these methods faced several limitations: 

1. Feature engineering bottleneck: The performance of traditional methods heavily relied on the quality 

of handcrafted features. Designing effective features required domain expertise and was often a 

time-consuming and iterative process. 

2. Limited robustness to variability: Pneumonia can manifest in various ways on X-ray images, with 

significant inter-and intra-patient variability. Handcrafted features often struggled to capture this di-

versity, leading to reduced accuracy in real-world scenarios. 

3. Lack of automatic feature learning: Traditional methods could not automatically learn optimal features 

from data, limiting their ability to adapt to complex and nuanced patterns in X-ray images 

 

2.2. Deep Learning Methods 

The rise of deep learning, notably characterized by the introduction of convolutional neural networks, marked a 

paradigm shift in pneumonia detection. Deep learning can learn hierarchical feature representations directly 

from data, removing the requirement of manual feature engineering.  

This has led to significant improvements in accuracy and robustness. Key advantages of deep learning for 

pneumonia detection: 

• Automatic feature learning: CNNs learn complex and discriminative features directly from image data, 

obviating the need for handcrafted features. 

• Hierarchical feature representation: CNNs learn hierarchical features, capturing both low-level details 

and high-level abstractions, enabling them to model complex patterns in X-ray images. 

• End-to-end learning: Deep learning models can be trained end-to-end, establishing a direct correlation 

between input images and diagnostic results, simplifying the pipeline, and reducing potential sources 

of error. 

 

Several prominent studies demonstrated the effectiveness of deep learning for disease detection: 

• Kermany et al. [8]: This research employed a deep learning model that was trained on an extensive da-

taset of chest X-ray images, resulting in exceptional performance in the detection of pneumonia and 

various other thoracic diseases.3 

• Wang et al. [17]: The ChestX-ray8 dataset, introduced in this work, enabled large-scale training of deep 

learning models for pneumonia detection and localization. 

• Rajaraman et al. [5]: This research focused on visualizing and interpreting CNN predictions, providing 

an understanding of the model’s decision process and enhancing clinical trust. 

• Acharya and Satapathy [3]: This study proposed a deep Siamese network architecture for pneumonia 

detection, leveraging the symmetric structure of chest X-ray images. 

• Badawi et al. [18]: While primarily focused on skin cancer classification, this study highlights the 

broader potential of deep learning methods for the interpretation of medical imageries, demonstrating 

how convolutional neural networks can achieve notable levels of accuracy in their performance in 

complex diagnostic tasks and provides a methodological framework that illustrates the versatility and 

capabilities of deep learning techniques in solving intricate pattern recognition challenges across vari-

ous medical imaging modalities. 

 

Despite the remarkable success of deep learning, challenges remain: 

• Data requirements: For deep learning models to be trained effectively, they usually demand extensive 

amounts of labeled data. 
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• Interpretability and explainability: Clinical acceptance depends on knowing the logic underlying a 

deep learning model's prediction. Even though CNN visualization and interpretation have advanced, 

more study is required to improve model transparency. 

• Generalization to diverse populations: Deep learning models may not generalize well to unseen data 

from different populations or imaging equipment. Further research is needed to ensure robust perfor-

mance across diverse clinical settings. 

 

2.3 Novelty and Contributions of This Research 

This research builds upon the advancements in deep learning while addressing some of the existing limitations. 

The key novelties and contributions include: 

• Tailored Architecture for Binary Pneumonia Classification: This research introduces a deep convolu-

tional neural network architecture explicitly developed for the application of binary classification of 

pneumonia from chest X-rays. While drawing inspiration from established CNN architectures like 

VGGNet, with its sequential convolutional blocks, this model employs a shallower configuration, 

deemed more suitable for the binary nature of the task. 

• Strategies for handling dataset imbalance: Techniques are employed to mitigate the impact of class 

imbalance, a common issue in medical image datasets, on model training and performance. 

• Emphasis on model interpretability: Visualization and interpretation methods are used to clarify the 

rationale behind the model’s decision-making, enhancing both transparency and the reliability of its 

outcomes 

3. Dataset and Methodology 

3.1. Dataset Description 

This dataset contains 5,856 chest X-ray images (JPEG) totaling 1.24 GB of data, featuring 1,583 samples that are 

categorized as normal and 4,273 samples that are associated with pneumonia. Kermany, Zhang, and Goldbaum 

[19]. This distribution, while imbalanced, reflects real-world scenarios where pneumonia cases may be more 

frequently documented in medical databases. Figure 1 illustrates the dataset distribution. 

 

 
 

Figure 1: Distribution of samples across normal and pneumonia categories 
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3.2. Data Preprocessing and Augmentation 

The preprocessing pipeline includes: 

1) Image resizing to 512 x 512 pixels 

2) Normalization to [0,1] range 

3) Data augmentation techniques: 

a) Random rotation (±5 degrees) 

b) Width and height shifts (±5%) 

c) Zoom range (±10%) 

 

 
       (a)            (b) 

 

Figure 2: Sample images from the dataset (a) showing normal and (b) pneumonia cases 

 

Image resizing to 512 × 512 pixels is crucial in deep learning due to neural network architectural constraints. 

This specific resolution balances preserving diagnostic details with computational efficiency. By standardizing 

input dimensions, the approach ensures consistent feature extraction across all chest X-ray images while 

maintaining sufficient spatial resolution to capture subtle pneumonia indicators. The fixed size allows convo-

lutional neural networks to process images uniformly, reducing memory consumption and enabling more sta-

ble model training. Grayscale conversion strategically simplifies image representation by focusing on intensity 

variations inherent in X-ray imaging. By eliminating color channels, the preprocessing pipeline concentrates on 

the critical diagnostic information communicated through grayscale intensity gradients. This transformation 

reduces computational complexity, removes potential color-based artifacts, and guarantees that the most per-

tinent diagnostic features are used to teach the model without being distracted by color variations. Normaliza-

tion to the [0,1] range is a fundamental technique that stabilizes neural network training by constraining input 

values. By scaling pixel intensities to a consistent range, the preprocessing approach prevents gradient van-

ishing or exploding during backpropagation. This normalization creates a uniform input scale that allows all 

features to contribute proportionally to the learning process, ultimately helping the model converge faster and 

more reliably. Data augmentation techniques address the challenges of medical image classification and dataset 

limitations. Random rotation (±5 degrees), width and height shifts (±5%), and zoom range (±10%) simulate re-

al-world variations in X-ray imaging procedures. These transformations increase the model’s robustness by 

exposing it to different imaging scenarios, preventing overfitting, and improving generalization capabilities. By 

artificially expanding the dataset through these controlled transformations, the preprocessing pipeline en-
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hances the model’s ability to recognize pneumonia indicators across various imaging conditions. as Figure 2 

presents sample images from both categories, highlighting the visual characteristics that distinguish normal 

from pneumonia cases. 

3.2.Model Pipeline 

The accompanying diagram illustrates the proposed model pipeline for pneumonia detection from X-ray im-

ages. This pipeline consists of several key stages, starting with data preprocessing and concluding with binary 

classification. 

1) Data Acquisition and Preprocessing: The pipeline begins with the input of X-ray images. These images are 

subjected to a sequence of preprocessing steps, including: 

a) Data Preprocessing: This stage likely involves tasks like image format standardization and handling of 

missing data. 

b) Image Loading and Splitting: The dataset is loaded into memory and divided into training, validation, 

and testing subsets. 

c) Data Augmentation: Techniques such as rotation, shifting, and flipping are employed to artificially 

expand the dataset and enhance the model's robustness. 

d) Rescaling to 0-1: Pixel values are normalized to a range of 0 to 1, which optimizes the training process. 

 

2) CNN Architecture: The central component of the pipeline is a Convolutional Neural Network (CNN) de-

signed for image feature extraction and classification. The CNN architecture is structured as a series of 

blocks (Block 1 to Block 7), each comprising: 

a) Conv2D Layer: A convolutional layer extracts features from the input image by utilizing learnable fil-

ters. 

b) MaxPool2D: A max-pooling layer down samples the feature maps, reducing spatial dimensions while 

preserving prominent features. 

c) Dropout 0.1: Dropout layers are incorporated to mitigate overfitting by randomly deactivating a portion 

of neurons during training. 

 

3) Global Average Pooling: Following the convolutional blocks, global average pooling is employed. This 

technique computes the spatial average of the feature maps, thereby reducing dimensionality while main-

taining representative information. This approach minimizes the number of parameters in the subsequent 

dense layers, which makes the model less susceptible to overfitting. 

4) Dense Output Layer: A dense layer is connected to the global average pooling layer to perform the final 

classification. This layer likely uses a sigmoid activation function for binary classification (normal vs. 

pneumonia). 

5) Binary Classification: The model's final output is a probability score indicating the likelihood of the input 

X-ray image representing a normal lung or one affected by pneumonia. 
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Figure 3. Proposed model pipeline 

4. Implementation Details 

4.1. Model Architecture 

The CNN model has been developed specifically for the binary classification task of chest X-ray images. It fea-

tures a total of seven convolutional blocks, each of which contains a convolutional layer utilizing ReLU activa-

tion, a max-pooling layer, and a dropout layer aimed at improving regularization. The process of feature ex-

traction in convolutional layers occurs in a hierarchical fashion, where the initial layers identify basic features 
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like edges and textures, and the deeper layers are responsible for recognizing more sophisticated features such 

as shapes and patterns. The kernel size of 3x3 in all convolutional layers allows for efficient feature extraction 

while keeping the computational cost manageable. The function of max-pooling layers is to decrease the spatial 

dimensions of feature maps, thereby down sampling the information while maintaining essential features. 

Conversely, dropout layers help to avoid overfitting and enhance the model's generalization performance by 

randomly turning off a subset of neurons during training. Following the convolutional blocks, the retrieved 

features are combined into a single vector representation using a global average pooling layer. Finally, the 

likelihood that the input image is identified as pneumonia is generated using a dense layer using a sigmoid 

activation function. 

  

Table 1. Model Hyperparameters 

Hyperparameter Value 

Convolutional Kernel Size 3x3 

Activation Function ReLU 

Max Pooling Size 2x2 

Dropout Rate 0.1 

Initial Learning Rate 0.001 

Learning Rate Decay Exponential (0.1 decay rate) 

Optimizer Adam (default parameters) 

Loss Function Binary Cross-Entropy 

Output Activation Sigmoid 

Batch Size 64 

Number of Epochs 30 

 

The specific configuration of the model is as follows: 

Block 1: 64 filters, kernel size 3x3, ReLU activation, MaxPooling (2x2), Dropout (0.1) 

Block 2: 96 filters, kernel size 3x3, ReLU activation, MaxPooling (2x2), Dropout (0.1) 

Block 3: 128 filters, kernel size 3x3, ReLU activation, MaxPooling (2x2), Dropout (0.1) 

Block 4: 160 filters, kernel size 3x3, ReLU activation, MaxPooling (2x2), Dropout (0.1) 

Block 5: 192 filters, kernel size 3x3, ReLU activation, MaxPooling (2x2), Dropout (0.1) 

Block 6: 224 filters, kernel size 3x3, ReLU activation, MaxPooling (2x2), Dropout (0.1) 

Block 7: 256 filters, kernel size 3x3, ReLU activation, MaxPooling (2x2), Dropout (0.1) 

Global Average Pooling 

Output Layer: Dense layer with 1-unit, Sigmoid activation 

 

Figure 4. Proposed model architecture  
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The increasing number of filters in subsequent convolutional blocks allows the network to learn a richer rep-

resentation of the input data as it progresses through the layers. 

5. Results and Discussion 

The final pneumonia detection model output on 10 chest X-ray images, 5 of which were labeled as “Normal” 

and 5 labeled as “Pneumonia”. For the 5 normal images, the model correctly identified 4 of them as normal, 

with a predicted probability of pneumonia ranging from 6.16% to 22.63%. In the one misclassified case, the 

model predicted a 64.98% probability of pneumonia, when the true label was normal. For the 5 pneumonia 

images, the model correctly identified all 5 of them as pneumonia, with predicted probabilities ranging from 

99.25% to 100.00%. Overall, the model demonstrated strong performance, correctly classifying 9 out of the 10 

images. The high precision and recall values of 0.975 and 0.977, respectively, further validate the model’s effi-

cacy in distinguishing between pneumonia and normal cases. 

5.1. Precision and Recall 

Precision and recall metrics were used to evaluate the model's performance. These measures are essential for 

assessing the model's ability to correctly identify positive cases of pneumonia while simultaneously attempting 

to lower the rates of false positives and false negatives. 

Precision quantifies the ratio of anticipated positive results to the total number of cases that have been antici-

pated to be positive: 

 

           
              

                                 
 (1) 

 

  

With the base test data, the model achieved a precision of 0.975. This means that out of all the cases predicted as 

pneumonia, 97.5% were pneumonia. With augmented test data, the precision slightly decreased to 0.970. Recall 

(also known as sensitivity) measures the proportion of correctly recognized positive cases relative to the overall 

count of true positive cases: 

 

        
              

                                
 (2) 

 

           
              

                                 
 (1)  

 

 

With the base test data, the recall was 0.977, indicating that the model correctly identified 97.7% of actual 

pneumonia cases. With augmented test data, the recall increased to 0.982. The slight decrease in precision and 

the increase in recall with augmented data suggests a potential shift in the model’s classification threshold. 

Augmentation may lead to more positive predictions, increasing true positives (and thus recall) but also po-

tentially increasing false positives (slightly decreasing precision). 

5.2. Classification Report 

A thorough assessment of the model's performance with regard to each class (Normal and Pneumonia) is pro-

vided in the classification report. In addition to overall accuracy, macro average, and weighted average, it in-

cludes precision, recall, F1-score, and support for every class. 

The F1-score, which is the harmonic mean of precision and recall, offers insight into how well these two crucial 

performance metrics are balanced: 
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Table 2. Classification Report (Augmented Test Data) 

 Precision Recall F1-score 

Normal (0) 0.95 0.92 0.94 

Pneumonia (1) 0.97 0.98 0.98 

Accuracy   0.97 

Macro Avg 0.96 0.95 0.96 

Weighted Avg 0.96 0.97 0.96 

 

The high F1 scores for both classes (0.94 for Normal and 0.98 for Pneumonia) indicate a good balance between 

precision and recall. The overall accuracy of 0.97 signifies that the model correctly classified 97% of the in-

stances in the augmented test set. The weighted average considers the class imbalance (more Pneumonia cases 

than Normal cases) and is also very high (0.96). 

5.3. Confusion Matrix 

The confusion matrix, which displays the numbers of true positives, true negatives, false positives, and false 

negatives, graphically depicts the model's performance. The values for precision, recall, and other metrics can 

be easily extracted from the confusion matrix. As an illustration, consider the Pneumonia class (class 1): 

True Positives (TP): The number of correctly predicted pneumonia cases (top-right cell) 

False Positives (FP): The number of normal cases incorrectly predicted as pneumonia (top-left cell) 

False Negatives (FN): The number of pneumonia cases incorrectly predicted as normal (bottom-right cell) 

True Negatives (TN): The number of correctly predicted normal cases (bottom-left cell) 

 

Figure 5. Confusion Matrix (Augmented Test Data) 

5.4. Metrics vs. Threshold 

Figure 6 shows the model's performance on the training and validation datasets over a sequence of training 

epochs in the training and validation accuracy plot. This plot is crucial for diagnosing potential overfitting or 

underfitting. Overfitting happens when a model captures the training data with such precision that it fails to 
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generalize effectively, including noise, and consequently performs poorly on unseen data (validation set). 

Conversely, underfitting shows that the model performs poorly on both the training and validation datasets 

and is not complex enough to capture the underlying patterns in the data. 
 
 

 

Figure 6. Training and Validation Accuracy over Epochs 

In an ideal scenario, both training and validation accuracy curves should increase and gradually converge to-

wards high values.A significant gap between training and validation accuracy suggests overfitting. Conversely, 

low accuracy on both sets implies underfitting. The rate of convergence can also provide insights into the 

learning rate and model complexity. A rapid increase in training accuracy coupled with slow validation accu-

racy improvement might indicate a need for regularization techniques or a smaller learning rate. 

5.4. Training and Validation Accuracy 

The plot in Figure 7 depicts the relationship between the decision threshold and key classification metrics: pre-

cision, recall, and accuracy. In binary classification, the decision threshold determines the probability above 

which a sample is classified as positive. Varying this threshold affects the trade-off between precision and re-

call. As we can see, precision is low with low thresholds and high with high thresholds. This is because at low 

thresholds, the model classifies more instances as positive, increasing false positives and thus lower precision. 

Conversely, at high thresholds, the model is more selective, classifying fewer instances as positive, resulting in 

fewer false positives and higher precision. The dependence for recall is inverse it’s highest when the threshold 

is 0 because all instances are classified as positive (capturing all true positives), and lowest when it’s 1 because 

no instances are classified as positive (resulting in no true positives). As for accuracy, it’s somewhat dependent 

on both precision and recall, seeking to balance both. Therefore, its highest scores are often found somewhere in 

the middle, representing a compromise between maximizing true positives and minimizing false positives. 
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Figure 7. The Dependence of Metric Scores on the Decision Threshold 

This plot is invaluable for selecting an appropriate decision threshold Adapted in accordance with the unique 

demands of the application. For example, in medical diagnosis, maximizing recall (minimizing false negatives) 

is often paramount, even at the cost of lower precision. 

 

5.5. Analysis 

The outcomes demonstrate how well the suggested model detects pneumonia. Strong performance in identi-

fying both positive and negative examples is suggested by the obtained accuracy of 0.97, as well as the excellent 

precision and recall scores. The confusion matrix (Figure 5) visually confirms this, showing a relatively low 

number of misclassifications. The training and validation accuracy curves (Figure 6) indicate stable learning 

and good generalization capability, as the validation accuracy closely tracks the training accuracy, suggesting 

minimal overfitting. Despite the promising results, some limitations should be acknowledged. The dataset, 

while substantial, may not fully represent the diversity of pneumonia presentations in real-world clinical set-

tings. Further evaluation on external datasets is crucial to assess the model’s robustness and generalizability. 

Additionally, the model currently provides a binary classification (normal vs. pneumonia). Extending the 

model to classify different types of pneumonia (e.g., bacterial, viral) would be clinically valuable. Finally, while 

the model assists in diagnosis, it should not replace the judgment of healthcare professionals. Human oversight 

remains essential for accurate and safe medical decision-making. The application of AI in healthcare raises 

ethical concerns, particularly for pediatric populations. Misdiagnoses could have severe implications. Ethical 

considerations include: 

Ensuring transparency and interpretability of AI decisions. 

Maintaining patient data privacy during training. 

Collaborating with clinicians to prevent over-reliance on AI systems. 

6. Results and Discussion 

The performance of the suggested CNN architecture is compared with that of other well-known image classi-

fication architectures in this section, with a focus on pneumonia identification from chest X-ray images. The 

chosen architecture provides a standard by which to evaluate the efficacy of the suggested model since it en-

compasses a variety of intricacies and methodologies. 

6.1. Selected Architectures 

The following architectures were chosen for comparison: 



IJT’2025, Vol.05, Issue 01. 13 of 16 
 

 

VGG16 Simonyan and Zisserman [20]: A deep convolutional network known for its use of small convolutional 

filters(3x3) and its sequential architecture. Its depth allows it to learn hierarchical features effectively. 

ResNet50 He et al. [21]: A residual network that addresses the vanishing gradient problem in deep networks 

through skip connections. These connections allow for easier training of very deep networks and improved 

performance. 

InceptionV3 Szegedy et al. [22]: This architecture employs inception modules, which use multiple convolutional 

filters of different sizes in parallel, capturing features at different scales. This multiscale approach enhances the 

model’s ability to recognize patterns of varying sizes. 

 

These architectures were pre-trained on ImageNet and then fine-tuned on the same chest X-ray dataset used for 

training the proposed model. This ensures a fair comparison, as all models benefit from transfer learning and 

are evaluated on the same data distribution. 

6.2. Performance Comparison 

The results in Table 3 show that for each architecture on the augmented test data. The proposed CNN achieves 

comparable accuracy to VGG16 but with a slightly improved recall and F1-score suggesting marginally better 

performance in identifying positive cases and a better balance between precision and recall. ResNet50 archi-

tecture demonstrated slightly lower performance metrics this can be attributed to several factors. First, while 

ResNet50’s deeper architecture allows it to learn more complex features it may also be prone to overfitting 

when applied to smaller or less diverse datasets Despite its built-in residual connections that mitigate the van-

ishing gradient problem these connections might lead to less emphasis on certain critical low-level features 

necessary for this specific task. Second, hyperparameter tuning such as learning rate and weight decay might 

not have been optimal for ResNet50 in this experiment given the sensitivity of deeper networks to such pa-

rameters a more tailored training regime might improve its results. The performance variations in the Incep-

tionV3 model, particularly its high recall and lower precision, can be attributed to several architectural and 

training-related factors inherent to the model’s design. This architectural approach allows the network to cap-

ture features at multiple scales simultaneously, which can lead to increased sensitivity in feature detection. The 

complex network topology means the model becomes very adept at detecting patterns, sometimes overly so, 

resulting in the high recall but lower precision we observe. 

Table 3. Performance Comparison of Different Architectures on Augmented Test Data 

Architecture Accuracy Precision Recall F1-score  

VGG16 0.97 0.97 0.97 0.97  

ResNet50 0.96 0.95 0.95 0.95  

InceptionV3 0.89 0.88 0.96 0.92  

Proposed CNN 0.97 0.97 0.98 0.98  

 

Table 4 summarizes recent studies on pneumonia recognition using custom deep-learning techniques, includ-

ing the proposed model. As shown, while other authors have explored various CNN architectures and achieved 

reasonable accuracy, our proposed model demonstrates competitive performance. Stephen et al. [23] and Omar 

and Babalık [24] used simpler CNN architectures with fewer layers, resulting in lower accuracy compared to 

our model. Wu et al. [25] achieved a comparable accuracy of 97% using a combined CNN-Random Forest ap-

proach with image enhancement. However, their method’s precision of 90% is notably lower than our model’s 

97.5% precision, indicating a higher rate of false positives. Our proposed model, with its seven convolutional 

blocks and data augmentation strategy, not only achieves high accuracy but also exhibits better precision and 

recall, signifying a more balanced and robust performance in identifying both positive and negative cases. This 

improvement suggests that our deeper architecture, coupled with careful data augmentation, allows for better 

feature extraction and generalization, leading to more accurate and reliable pneumonia detection. 
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Table 4. A summary of the use of customized deep learning techniques for pneumonia detection.. 

Authors Techniques Accuracy  

Kermany et al. [8] Transfer Learning 92.8% 

Stephen et al. [23] CNN with four convolution layers 93.7% 

Omar and Babalık [24] CNN with five convolution layers 87.65% 

Chakraborty et al. [26] 17 layers network with three convolutional layer CNN 95.62% 

Chhikara et al. [27] Modified Inception V3 90% 

Liang and Zheng [28] 49-layer CNN with residual connections 90.05% 

Proposed Model CNN with seven convolutional blocks, data augmentation 97% 

 

4. Conclusion and Future Work 

The global challenge of pneumonia, particularly its impact on pediatric populations, necessitates innovative 

diagnostic solutions to address critical healthcare gaps. This research presents a novel deep-learning method-

ology for automated pneumonia detection from chest X-ray images, signifying a significant advancement to-

ward more accessible and efficient medical diagnostics. Our research contributes significantly to medical image 

analysis and AI in healthcare. First, we developed a convolutional neural network architecture specifically de-

signed for binary pneumonia classification. This architecture incorporates seven convolutional blocks with 

progressively increasing feature extraction capabilities, demonstrating superior performance compared to uti-

lizing pre-trained models and transfer learning approaches. Second, we implemented a comprehensive pre-

processing pipeline. This pipeline includes grayscale conversion, normalization, and a strategic data augmen-

tation strategy, showcasing how careful image preparation can significantly improve model generalization and 

overall performance. Third, we rigorously benchmarked our model’s performance against established CNN 

architectures, including VGG16, ResNet50, and InceptionV3. This comparative analysis provides valuable in-

sights into the relative strengths and limitations of different deep-learning approaches for medical image clas-

sification tasks. The proposed model achieved noteworthy performance metrics. We observed a high overall 

accuracy of 97%, underscoring the model’s reliability in differentiating between normal and pneumo-

nia-positive chest X-rays. Furthermore, the model achieved a precision of 0.975 and a recall of 0.977. These 

balanced metrics demonstrate the model’s robust ability to minimize both false positive and false negative 

classifications, crucial for clinical applications. The minimal variation in performance between the base and 

augmented test datasets further indicates the model’s inherent stability and potential for generalization to un-

seen data. Beyond these technical achievements, this research has broader implications for global healthcare. 

The automated detection mechanism offers a potential solution for regions with limited access to specialized 

radiological expertise, particularly in low-resource settings where pediatric pneumonia mortality rates remain 

alarmingly high. The model’s architecture, while achieving high performance, maintains computational effi-

ciency, making it potentially scalable for widespread clinical deployment and integration into existing 

healthcare workflows. This work also exemplifies the transformative potential of interdisciplinary research, 

bridging computer science, medical imaging, and healthcare innovation. While the current results are promis-

ing, we acknowledge limitations, particularly regarding the dataset’s limited diversity, which poses challenges 

for generalization to broader populations. Future research will address these limitations and explore several 

key avenues: expanding the model to include multi-class classification in order to distinguish between bacterial, 

viral, and fungal pneumonia types; conducting comprehensive testing and validation across more diverse de-

mographic and geographic datasets to assess true generalizability; developing more advanced visualization 

techniques to explain the model’s decision-making process and build clinical trust; and collaborating with 

healthcare institutions to develop seamless, clinically validated integration strategies for real-world deploy-

ment. 
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