

IJT’2024, Vol.04, Issue 02. https://ijt.journals.ekb.eg

Enhanced Particle Swarm Optimization for Task Offloading

and Scheduling in Cloud-Fog Environment

Marwa Gamal1, Samar Awad1,*, Rehab F. Abdel-Kader2, and Khaled Abd

El Salam1,3

1Electrical Engineering Department, Faculty of Engineering, Suez Canal University, Ismailia, Egypt.

2Electrical Engineering Department, Faculty of Engineering, Port Said University, Port Said, Egypt.
3Department of Information System, College of Information Technology, Misr University for Science

& Technology (MUST), 6th of October City 12566, Egypt.

* Correspondence: Samar_Awad@eng.suez.edu.eg; Tel.: (01204016520)

Abstract: The explosion of devices and their varied uses in the Internet of Things (IoT)

have created a massive quantity of data that requires significant processing power. Fog

computing, as a prolongation of cloud computing, presents a promising new model by

bringing processing power closer to users through fog servers. Compared to accessing

distant cloud servers, this significantly reduces latency, or the required time for data to

travel. This setup allows users to offload tasks to nearby servers, ultimately improving the

Quality of Service (QoS) they experience. Finding the best match between workflow tasks

and available resources is critical to minimizing completion time (makespan), especially

in delay-sensitive applications requiring fast data processing. However, achieving this

optimal match remains a challenge. This work proposes an Enhanced Particle Swarm

Optimization (EPSO) algorithm specifically designed to address this challenge. The per-

formance of EPSO is compared against PSO, Max-Min, and Round-Robin (RR) scheduling

methods. Simulations are conducted using diverse scientific workflow domains. The re-

sults demonstrate that EPSO outperforms all other methods in minimizing makespan

across all tested workflows. Furthermore, EPSO exhibits competitive performance in

other metrics like energy consumption and cost while maintaining greater stability and

reliability.

Keywords: Cloud-Fog Computing; Offloading; Scientific Workflow; PSO; Task Schedul-

ing.

1. Introduction

The telecommunication networks’ growth is a major driver behind the booming Internet of Things (IoT). Sen-

sor-equipped devices are key to gathering data, but their limited processing power means this information

must be transferred to the cloud for storage, analysis, and decision-making. While cloud computing offers

convenient access to powerful resources, it can't always keep up with the real-time needs of certain IoT appli-

cations [1]. Fog computing complements rather than replaces cloud computing, collaborating to handle diverse

task lengths and computations. With widespread edge-cloud adoption, user requests vary between cloud and

fog nodes based on task performance metrics, requiring processing to meet user needs [2]. The different char-

acteristics of fog and cloud, along with unpredictable user requests and resource constraints, complicated task

scheduling necessitating, discussion, and attention.

Offloading and task scheduling significantly influences system performance by minimizing network overhead,

maximizing resource utilization, and reducing energy consumption [3]. Task scheduling primarily involves

mapping tasks to suitable resources to ensure task execution completion while meeting the QoS requirements

Citation: Gamal , M.; Awad , S.; Abdel-

Kader , R; Khaled Abd El Salam , K.

IJT’2024, Vol. 04, Issue 02, pp. 01-16, 2024.

Editor-in-Chief: Youssef Fayed.

Received: 29/07/2024.

Accepted: 11/10/2024.
Published: 11/10/2024.

Publisher’s Note: The International Journal of
Telecommunications, IJT, stays neutral regard-ing
jurisdictional claims in published maps and insti-
tutional affiliations.

Copyright: © 2023 by the authors. Submitted for

possible open access publication under the terms

and conditions of the International Journal of

Telecommunications, Air Defense College, ADC,

(https://ijt.journals.ekb.eg/).

https://ijt.journals.ekb.eg/

IJT’2024, Vol.04, Issue 02. 2 of 16

[4]. Despite the notable advantages of fog-cloud collaboration, task scheduling encounters challenges stemming

from resource demands, task configurations, and its dynamic nature. These factors affect the QoS optimization,

necessitating parameter adjustments and the selection of suitable fog and cloud resources [5]. The primary ob-

jective of optimization in task scheduling is to minimize or maximize specific functions. Optimization metrics

include makespan, energy consumption, delay, and cost among others [4]. Scheduling utilizes meta-heuristic

algorithms to approximate optimal solutions, often involving randomized search methods, because it is con-

sidered Nondeterministic Polynomial (NP)-complete [6]. As a result, many popular population-based algo-

rithms are used for scheduling workflow, such as PSO, Simulated Annealing (SA), Ant Colony Optimization

(ACO), and Genetic algorithm (GA) [7]. In addition, there are many more non intelligence (classical) algorithms

as Round Robin (RR) [8], First Come First Serve [9] (FCFS), Max-Min [10].

Tasks are conceptualized as workflows in numerous IoT applications. A workflow comprises interdependent

tasks that must be executed with designated priorities and in a specific sequence [11]. Task scheduling is de-

picted as Directed Acyclic Graph (DAG) in a workflow. Each node represents a task, with the weight indicating

its computational cost or runtime. The prerequisite relationships between tasks are denoted by the edges of the

graph [11, 12], forming the workflow. The objective may include minimizing cost, energy consumption, storage

space usage, data transfer time, overall runtime, or a combination of these factors.

Building on the proposed work [13, 14], this research investigates the performance of PSO algorithm specifically

for workflow scheduling within the novel three-tier IoT-cloud-fog environment illustrated in Figure 1. In con-

trast to [14], which focused solely on fog computing, this research investigates EPSO's effectiveness within the

broader cloud-fog computing paradigm. The EPSO uses linearly decreasing inertia weight allowing particles to

explore the search space greatly in the initial stages. That increases the chance of finding promising regions

containing the optimal solution. As the inertia weight linearly decreases over time, the particles' exploration

range contracts. This focuses their search on exploiting the identified promising region, leading to faster con-

vergence towards the optimum. Comparative analysis of EPSO, PSO, Max-Min, and RR scheduling algorithms

based on performance metrics as cost, energy consumption, and makespan demonstrates the effectiveness of

this approach. The newly developed method focuses on reducing the time required to complete numerous jobs

(makespan), prioritizing it as the objective function due to its significant effect on enhancing user satisfaction

and increasing the productivity of computational resources. This work is implemented on FogWorkflowSim

[15].

Figure 1. Paradigm of cloud-fog collaboration [4].

There are many recent researches on task offloading and scheduling in fog-cloud collaboration. Tychalas and

Karatza [8] built upon the weighted round-robin algorithm to propose a dynamic probabilistic load balancing

approach. This method assigns probabilities to available resources based on a combination of their computa-

tional power and how busy they currently are, as measured by key server metrics.

Subramoney and Nyirenda [13] compared cloud and fog-cloud collaboration using the well-established PSO for

workflow scheduling. A weighted objective function that considers three key factors: cost, makespan, and en-

IJT’2024, Vol.04, Issue 02. 3 of 16

ergy consumption is presented. Additionally, they leverage the recently developed FogWorkflowSim to simu-

late both cloud and cloud-fog architectures.

Subramoney and Nyirenda [16] proposed a comparative assessment of population-based methods for work-

flow tasks scheduling in IoT-fog-cloud environments.

Pham et al. [17] declared the trade-off between makespan and cost, alongside meeting deadline constraints in

task scheduling. It introduces a heuristic algorithm called Cost-Makespan aware Scheduling (CMaS) to manage

these competing objectives.

M Gamal et al. [18] introduced three offloading strategies designed for IoT-fog-cloud environments, particu-

larly targeting real-time applications. LCO is optimal for tasks requiring low latency. EBO prioritizes energy

efficiency and computationally intensive tasks. EO aims to strike a balance between latency and energy con-

sumption, optimizing resource utilization.

P. Memari et al. [19] introduced for resource allocation a tabu search method. Tabu search is chosen due to its

versatility across various optimization problems and its advantages in memory and speed. The research focuses

on tackling the problem of finding the most efficient allocation to optimize the utilization of resources and

minimize response time. To address this challenge, a tabu search method is proposed to mitigate hardware

costs. Furthermore, using meta-heuristic approaches, the study presents a latency-aware scheduling algorithm

based on Virtual Machine (VM) matching. The tabu search is enhanced through the integration of Fruit Fly

Optimization (FOA) algorithms and Approximate Nearest Neighbor (ANN) techniques.

Ali et al. [20] suggested a task scheduling method using the Multi-objective Optimization Problem (MOP) to

minimize both makespan and cost. This approach utilizes a model incorporating Discrete Non-dominated

Sorting Genetic Algorithm II (DNSGA-II) to allocate tasks automatically to fog or cloud devices. The model

effectively distributes the workload among cloud and fog nodes.

Fellir et al. [21] addressed task scheduling with a model of multi-agent that prioritizes tasks based on a combi-

nation of factors: priority, waiting time, and resource availability. Yadav et al. [22] addressed the cloud

makespan and cost trade-off by proposing the Budget-Aware Scheduling (BAS) algorithm for sequencing ap-

plications. The technique focuses on scheduling applications on a timeline to ensure their timely execution,

thereby reducing the required expenditures for utilizing cloud resources. It aims to enhance resource utiliza-

tion.

Farid et al. [23] tackled the Multi-objective Optimization Problem (MOP) by employing a PSO approach based

on fuzzy resource utilization in workflow scheduling. The objective is to reduce costs and makespan while

ensuring reliability constraints are met. Moreover, the research simultaneously accounts for both data trans-

portation order and task execution location. Subramoney and Nyirenda [24] introduced a method called mul-

ti-swarm particle swarm optimization (MS-PSO) to enhance the scheduling of scientific tasks in IoT-cloud-fog

systems and addresses the premature convergence issue of classic PSO. Table 1 provides a concise overview of

the methodologies and critical parameters addressed by each task scheduling algorithm in the mentioned ref-

erences.

The paper's remaining sections are organized as follows: Section 2 contains studies on offloading and task

scheduling algorithms. Section 3 details the scheduling of workflow and performance metrics. Section 4 details

the concept of workflow and the proposed method. Section 5 discusses the experimental outcomes. Finally,

Section 6 demonstrates the research’s conclusion.

Table 1. comparison of current methods for task scheduling.

Authors Technique used Objective criteria

Tychalas et al. [8] An advanced Weighted Round Robin

algorithm

load balancing

task execution, and time

Subramoney et al.

[13]

PSO with a weighted sum objective

function

Makespan, energy consumption, and cost

Table 1. (Continued.) comparison of current methods for task scheduling.

Subramoney et al. Evaluation of workflow scheduling Makespan, energy consumption, and cost

IJT’2024, Vol.04, Issue 02. 4 of 16

[16] across cloud and fog infrastructures

Pham et al. [17] Collaborative task scheduling between

cloud and fog

cost

Gamal, M et al. [18] Three offloading strategies (LCO, EBO,

and EO)

Makespan, energy consumption, and cost

Memari et al. [19] latency-aware scheduling approach in

cloud-fog

Latency, and cost

Ali et al. [20] Non-dominated Sorting Genetic Algo-

rithm II (NSGA-II)
Execution time, makespan, and energy

consumption

Fellir et al. [21] A multi-agent system execution time, resource utilization, and

energy consumption

Yadav et al. [22] Task classification, and resource alloca-

tion

Latency, and resource utilization

Farid et al. [23] Multi-Objective Optimization Algo-

rithm

Cost, and execution time

Subramoney et al.

[24]

Multi-Swarm PSO Execution time, makespan, energy con-

sumption, and load balancing

2. Methodology of workflow scheduling

2.1. The notion of Workflow

The concept of workflow application is illustrated through a DAG, represented by G = (T, E), where T repre-

sents vertices denoting tasks from t1 to tn and edges E [16, 23] denoting task dependencies. Each edge represents

data inter-task, denoted as di, j =< ti, tj > ∈ E, with di, j denoting the size of output data from task ti to task tj. Task tj

begins execution after task ti is completed. A task ti without a parent is considered a starting task, while a task tj

without a child is regarded as an ending task. Figure 2 shows a workflow example with nine tasks. Tasks on the

same level (appearing side-by-side) can be done at the same time. For instance, tasks t2, t3, and t4 can all be run

concurrently.

In an IoT-cloud-fog environment, workflow application offloading and scheduling involve assigning tasks

within a workflow to various computing resources. These resources have unique characteristics, and the goal is

to achieve optimal workflow execution by minimizing three factors: total completion time (makespan), energy

consumption, and overall cost.

2.2. Performance metrics

This setup includes three primary computational resources categories of: end devices, fog servers, and cloud

servers. These resource groups encompass processing and storage capacities, as well as bandwidth, memory,

and the requirements of power. The computational assets within the fog and cloud segments are represented as

VMs. The inclusion of end devices is justified by the fact that certain minor tasks are more efficiently handled

locally, considering economic and resource efficiency, rather than being offloaded to fog and cloud servers.

This research prioritizes a single optimization goal to identify the most efficient approach for both task of-

floading and resource selection. This objective focuses on minimizing makespan of the workflow. However, the

study also considers other factors like energy consumption and total costs.

2.2.1. Makespan

The workflow makespan, which represents the total time needed to complete the entire workflow successfully,

is calculated using the following formula:

 (1)

IJT’2024, Vol.04, Issue 02. 5 of 16

, Where STti represents the starting time and FTti signifies the task ti finishing time within a specific workflow.

2.2.2. Energy consumption

Energy consumption [25] is established using idle and active components, represented as Eidle and Eactive re-

spectively. The first one pertains to energy utilized during resource idleness, whereas the second represents

energy expended during task execution. The energy expended during the idle interval [13, 25] is calculated as

follows:

 ∑ ∑

(2)

, Where idlei,k corresponds to a collection of periods of idle slot k on resource j, and fmin j represents the frequency

along with Vmin j that denotes the minimum voltage for resource j, correspondingly. Lj,k represents the duration

of the idle time for idlei,k. Therefore, the active energy is determined by.

 ∑

 ()

 (3)

, Where α represents a fixed number, while fi and Vi represent the frequency and supply voltage of the task i

executed resource. When the resource is in an idle state, it enters sleep mode, characterized by the lowest volt-

age supply and a relative frequency. The overall energy consumption (TE) across the IoT-cloud-fog system en-

tire workflow during the execution is given by:

 (4)

2.2.3. Cost

This encompasses both communication and computation expenditures. Computational costs are applicable

across all three types of computational resources, However, when tasks are carried out on the end device,

communication costs are not incurred. The computational cost [25] associated with the utilization of resource

for computing r is outlined like follows:

 () (5)

, Where the cost of unit processing is represented as pr. The communication cost, that indicates the data trans-

mission expenditure for conveying a task's output of dimension di, j from the executed resource for task i to the

designated resource handling task j, is established by:

 (6)

Here, trci,j represents the individual communication cost from the selected resource for task i to the allocated

resource for task j. trci,j is equal to 0 if both tasks are performed on the identical resource. Consequently, for a

scenario involving n tasks and m computational resources, the overall cost TC can be expressed as follows:

 ∑ ∑

 ∑ ∑

 (7)

This study emphasizes minimizing the time needed to complete multiple tasks (makespan) presented in equa-

tion (1), considering it as the primary objective to improve user satisfaction and enhance the productivity and

efficiency of computational resources. Therefore, the objective function is defined as follow:

IJT’2024, Vol.04, Issue 02. 6 of 16

 () (8)

, Where p presents the assignment of a workflow's n tasks to the m available computing resources. In PSO

terminology, p is known as a particle.

3. Proposed EPSO

EPSO is an extension of PSO which is a computational method proposed by Kennedy and Eberhart [26] used for

solving optimization problems. Motivated by the social behavior of fish gathering or birds schooling, PSO

simulates the social behavior of individuals (particles) within a swarm. Each particle denotes a potential solu-

tion to the optimization issue, and the swarm collectively searches the solution space to find the optimal solu-

tion. PSO is simple and relatively easy to understand and implement. But it suffers from premature conver-

gence issue due to constant inertia weight. So, Linearly Decreasing Weight EPSO tackles this issue by intro-

ducing a dynamic inertia weight by using a weight that starts high and linearly decreases over time.

3.1. Particle representation

This section explains the particle denoted by "p," which is involved in the objective function in Eq. (8), before

going over the rationale for the proposed EPSO. In this study, the tasks within the workflows can be arranged

for implementation either at the source (end device), a cloud VM, or a fog VM. End devices do not delegate their

tasks to other end devices; rather, they can only assign tasks to cloud and fog resources. Consequently, when

scheduling workflows, only a single representative end device is included in the encoding process. Given that

scheduling tasks in a cloud-fog environment is inherently discrete, natural numbers are employed to encode

individuals for the proposed EPSO algorithm.

This section focuses on the concept of particles. These particles represent mappings between tasks and the re-

sources they'll be executed on. Each particle, "p", is a one-dimensional vector with a length equal to the total

number of tasks (T) in the workflow. Each element (position) within this vector indicates the specific VM as-

signed to a particular task. The value at each position is an integer ranging from 1 to R, where R represents the

total number of available resources in the FogWorkflowSim environment.

For example, imagine Figure 3 depicts a workflow with T=8 tasks that need to be mapped to an IoT-cloud-fog

environment with R=5 available resources (including 2 cloud VMs and 2 fog VMs). In this scenario, the particle

p = {3, 5, 2, 4, 1, 3, 2, 5} represents a potential mapping solution. Each value in the particle vector corresponds to

a task, and the value itself indicates the assigned VM (between 1 and 5) for that specific task.

Figure 2. Workflow of nine tasks example [4].

Figure 3. Workflow scheduling example [4].

3.2. Workflow Scheduling Using EPSO

EPSO is a technique for optimizing how tasks within a scientific workflow are assigned to computing resources.

The goal is to find the most efficient allocation that considers reducing in makespan as objective function. In this

approach, particles represent a population of individuals; they navigate through a given solution space based

IJT’2024, Vol.04, Issue 02. 7 of 16

on their current positions xki and velocities vki for the kth iteration. The quality of each particle is assessed by

applying a predetermined fitness function that is specific to the optimization issue. Each particle's best-known

personal position pBesti affects how it moves as well as the best-known global position gBest for the whole

swarm.

This iterative process guides the swarm towards the optimal position. EPSO’s overview is explained in Algo-

rithm 1 as:

 Initialize EPSO parameters like the number of particles (N), search space boundaries, minimal and

maximal inertia weight, learning factors, and maximum iterations (G).

 Generate a swarm of particles with random positions (representing task schedules) and velocities

within the search space.

 Calculate the fitness of each particle's schedule using makspan metric using Eq. (8).

 For each particle, update its personal best position (pbest) if the current schedule has better fitness.

 Find which particle has the best fitness (gbest) in the entire population.

 For each iteration do:

 Linearly decrease the inertia weight (𝜔) from its maximal value (𝜔begin) to a minimal (𝜔end) as:

 ()

, Where 𝜔begin is a starting value of inertia weight, 𝜔end is finishing value, tmax is the total iter-

ation number and t represents the current iteration.

(9)

 Update the velocity of each particle based on its current velocity, the difference between its po-

sition and pbest/gbest, and the new inertia weight as follow:

 (
)

 (
)

 (10)

, where i represents Particle number, ω is the inertia weight; r1 and r2 are represented randomly

between (0,1); and c1 and c2 are the learning factors.

 Update the position of each particle based on its current position and velocity.as follow:

 (11)

 Calculate the fitness of the particles' schedules after position update.

 If a particle's new position has better fitness, update its pbest.

 Verify if the total number of iterations has been reached.

 If the termination condition is met, exit the loop and return the best solution (the schedule).

Due to the simplicity of the Socio-Cognitively Inspired standard PSO [13], this work adopts it, but on other

hand it suffers from Premature Convergence. Furthermore, in this technique, to schedule particle positions, first

discretize each dimension variable into an integer in the fog server set p= {1, 2, …., n} as in previous subsection.

This ensures that particle positions match task scheduling. Secondly, decreasing 𝜔 linearly over iterations by

using a weight that starts high and linearly decreases over time. This can help in fine-tuning the search behavior

of particles during different stages of the optimization process. It ensures that particles continue to explore the

search space, preventing premature convergence.

EPSO achieves a better balance between exploration and exploitation compared to standard PSO with a fixed

weight. This can lead to finding better schedules that optimize resource utilization and minimize execution

time. On other hand a very rapid decrease in 𝜔 might limit exploration too early, hindering the discovery of

diverse solutions.

Algorithm 1 depicts the EPSO optimization method. The parameters N represents the number of particles and

G denotes the number of generations. The remaining parameters are defined in previous subsections. The al-

gorithm begins with the initialization of N, c1, c2, ω, and G. The process involves constructing N particles and

IJT’2024, Vol.04, Issue 02. 8 of 16

evaluating them using the Fogworkflowsim toolbox [15]. To determine the global and personal optimal values,

the value of fitness function is evaluated. Then the algorithms start a repeated process for G generations. Based

on improved values, the system modifies the personal and global best values.

Algorithm 1 EPSO algorithm

1: Set G, c1, c2, 𝜔begin, 𝜔end, and N ► Inputs

2: gBest and its evaluation F(gBest) ► outputs

3: N particles randomly generated

4: F(gBest) = 0

5: for i ≤ N do

6: Call up the workflow scheduler

7: Fitness value computed, F(xi) for particle i using Eq.8

8: set pBesti equal xi

9: F(pBesti) = F(xi)

10: if F(xi) > F(gBest) then

11: gBest = xi

12: F(gBest) = F(xi)

13: end if

14: end for

15: t = 0 ► initialize t

16: while t ≤ G do

17: for k ≤ N do

18: Update ωt as Eq. 9

19: Update vk and xk by applying Eq. 10 and Eq. 11

20: Call up the workflow scheduler

21: Fitness value computed, F(xk), as in Eq. 8

22: if F(xk) > F(pBestk) then

23: pBestk = xk

24: F(pBestk) = F(xk)

25: end if

26: if F(xk) > F(gBest) then

27: gBest =xk

28: F(gBest) = F(xk)

29: end if

30: end for

31: t=t+1

32: end while

4. Performance evaluation

This section commences by providing an overview of the workflow models and outlines the setup of the sim-

ulation environment using the FogWorkflowSim Toolkit [15]. Following these initial details, the section pro-

ceeds to present the experimental results and engage in a discussion thereof.

4.1. Workflow models

This research employs five established scientific workflows [27] from diverse scientific fields to thoroughly

assess the effectiveness of the proposed method. These scientific workflows, described by the Pegasus frame-

work [28], utilize XML files containing DAG representations as input for the simulations. Workflows involve

IJT’2024, Vol.04, Issue 02. 9 of 16

several tasks, dependencies, run-times, and data transfers. Fig. 4 illustrates the workflows in a graphical ar-

rangement.

Figure 4. Scientific workflows’ structure [4].

The workflows are outlined below:

1) Montage Workflow: This workflow simulates an application of astronomy that generates custom mo-

saics of the sky from utilizing several input images.

2) CyberShake Workflow: This workflow is used to assess and characterize earthquake hazards posing a

threat to a specific region.

3) Epigenomics Workflow: Applied in the field of bioinformatics, this workflow automates various op-

erations involved in processing genome sequences.

4) LIGO Workflow: It's a detector that uses lasers to measure incredibly tiny vibrations in spacetime, with

the goal of directly observing gravitational waves.

5) Sipht Workflow: Developed to automate the search for small RNA (sRNA) encoding genes across all

bacterial replications.

4.2. Simulation environment

The FogWorkflowSim simulator is executed using the Eclipse Java IDE. The simulations are conducted on a

computer system equipped with a 64-bit Windows 10 operating system, an Intel (R) Core (TM) i7- M 640 @ 2.80

GHz, and 6 GB of RAM. Each algorithm was run with 10 particles.

In EPSO, learning factors C1 and C2 are set to 2, while the initial and final inertia weights (𝜔begin and 𝜔end) are

0.8 and 0.3, respectively. To evaluate average performance, simulations are carried out 10 times for each work-

flow. PSO uses an inertia weight of 1 and learning factors of 2 for C1 and C2. The simulation environment in-

volved ten cloud VMs, six fog VMs, and one end device. The specific characteristics of each server in the

three-layer IoT-fog-cloud architecture, along with the detailed parameter configurations, are presented in Table

2.

Table 2. IoT-cloud-fog environment parameter setting.

Parameters End device Fog VM Cloud VM

Rate of Processing (MIPS) 1000 1300 1600

Task execution Cost ($) 0 0.48 0.96

Communication Cost ($) 0 0.01 0.02

Busy Power (MW) 700 800 1600

Idle Power (MW) 30 40 1300

Uplink Bandwidth (Mbps) 20 10 1

Downlink Bandwidth (Mbps) 40 10 10

IJT’2024, Vol.04, Issue 02. 10 of 16

4.3. Simulation results

The performance of EPSO algorithm is evaluated against three other scheduling methods: PSO, Max-Min, and

Round- RR. All four algorithms are compared under the same simulated conditions to ensure a fair assessment.

Figures 5, 6, and 7 show how different scheduling algorithms perform on Montage, LIGO, and SIPHT work-

flows when the number of tasks varies (100, 300, and 500 tasks). Interestingly, all algorithms seem to perform

about the same for Montage workflows regardless of the number of tasks.

EPSO algorithm demonstrably outperformed other compared methods (PSO, Max-Min, and RR) on all three

workflow benchmarks: Montage, LIGO, and SIPHT. Specifically, EPSO achieved significant reductions in

makespan. On the Montage workflow, EPSO's average improvement was 36.78% over PSO, 44.05% over

Max-Min, and a substantial 44.66% over RR. In LIGO execution, EPSO impressively reduced the makespan by

36.57% compared to PSO, 24.39% compared to Max-Min, and 27.16% compared to RR. Finally, for the SIPHT

workflow, EPSO continued to exhibit superior performance with improvements in makespan of 4.78% com-

pared to PSO, 20.23% compared to Max-Min, and a noteworthy 32.24% improvement over RR.

For different workflows, EPSO ranks the best performance once 300 tasks are completed. For Montage, LIGO,

and SIPHT, it reduces makespan compared to PSO by 8.47%, 28.29%, and 35.91%, respectively. It decreases

makespan by 23.92%, 37.46%, and 25.38% in comparison to Max-Min. Ultimately, it achieves reductions in

makespan of 24%, 27.06%, and 32.97% for different workflows when compared to RR.

Finally, when executing 500 tasks, EPSO displays the most favorable performance in terms of makespan be-

cause it decreases makespan more than other algorithms for all workflows. It reduces makespan than PSO by

12.92%, 21.23%, and 40.10% for Montage, LIGO, and SIPHT, respectively; Max-Min by 23.05%, 23.38%, and

36.70%; and RR by 23.55%, 8.19%, and 43.45%.

Figures 8, 9, and 10 show the energy consumption metric's average performance results for the three workflows

across varying task sizes: 100, 300, and 500 tasks. For 100 task execution Montage exhibits the smallest energy

consumption. Proposed EPSO outperforms other algorithms except for SIPHT workflow PSO shows the best

performance. It has more favorable performance by decreasing energy consumption than PSO by 38.50% and

61.02% for Montage and LIGO, while PSO excels EPSO for SIPHT by decreasing energy consumption 7.03%

than it. EPSO presents better performance by 58.84% and 44.18% than Max-Min, and RR respectively for LIGO

workflow. Finally, Max-Min presents the best performance for SIPHT. It decreases energy consumption com-

pared to

EPSO by 16.54%. While RR presents the lowest performance it shows increasing in energy consumption com-

pared to EPSO by 7.83%.

For the execution of 300 tasks, the Max-Min algorithm performs the poorest across three workflows, while

EPSO consistently surpasses other algorithms. In the Montage workflow, EPSO reduces energy consumption by

10.93%, 27.06%, and 19.28% compared to PSO, Max-Min, and RR, respectively. EPSO also achieves the best

performance in the LIGO workflow, lowering energy consumption by 18.96%, 33.35%, and 22.97% compared to

PSO, Max-Min, and RR, respectively. Similarly, in the SIPHT workflow, EPSO reduces energy consumption by

34.97%, 54.29%, and 40.77% compared to PSO, Max-Min, and RR. These results indicate that EPSO is the most

favorable algorithm for reducing energy consumption in the 300-task case study for both the LIGO and SIPHT

workflows.

With the execution of 500 tasks, the Max-Min algorithm consistently demonstrates the weakest performance

compared to other algorithms. Meanwhile, PSO for the SIPHT workflow yields the lowest efficiency. The mod-

ified EPSO algorithm outperforms the other algorithms across various workflows, with the exception of the

LIGO workflow. Specifically, in the Montage workflow, EPSO achieves significant energy savings, reducing

consumption by 63.62%, 70.77%, and 20.19% compared to PSO, Max-Min, and RR, respectively. In the LIGO

workflow, EPSO reduces energy consumption by 20.22% and 21.07% compared to PSO and Max-Min, though

RR achieves a further reduction of 9.19% compared to EPSO.

IJT’2024, Vol.04, Issue 02. 11 of 16

Figure 5. For 100 tasks, makespan comparison.

Figure 8. For 100 tasks, energy consumption comparison.

Figure 6. For 300 tasks, makespan comparison.

Figure 9. For 300 tasks, energy consumption comparison.

Figure 7. For 500 tasks, makespan comparison.

Figure 10. For 500 tasks, energy consumption comparison.

Figures 11, 12, and 13 illustrate the average performance results of the total cost metric for the five workflows

across varying task sizes: 100, 300, and 500 tasks. As the number of tasks increases, Montage consistently pre-

sents the lowest cost. For the LIGO and SIPHT workflows, there is a slight increase in cost when the quantity of

tasks increases.

For the execution of 100 tasks, the proposed EPSO outperforms PSO in reducing costs by 18.22%, 10.88%, and

3.91% for Montage, LIGO, and SIPHT, respectively. However, PSO demonstrates better performance in cost

reduction compared to EPSO for LIGO by 3.51%. EPSO achieves higher performance than Max-Min by reduc-

0

1000

2000

3000

4000

5000

Montage LIGO SIPHT

M
ak

es
p

an
 (

se
c)

Scientific Workflow

EPSO PSO Max-Min RR

0

100

200

300

400

500

600

Montage LIGO SIPHT

E
n

er
g
y
 C

o
n

su
m

p
ti

o
n

 (
J)

Scientific Workflow

EPSO PSO Max-Min RR

0

1000

2000

3000

4000

5000

6000

7000

8000

Montage LIGO SIPHT

M
ak

es
p

an
 (

se
c)

Scientific Workflow

EPSO PSO Max-Min RR

0

200

400

600

800

1000

1200

1400

Montage LIGO SIPHT

E
n

er
g
y
 C

o
n

su
m

p
ti

o
n

 (
J)

Scientific Workflow

EPSO PSO Max-Min RR

0

2000

4000

6000

8000

10000

12000

Montage LIGO SIPHT

M
ak

es
p

an
 (

se
c)

Scientific Workflow

EPSO PSO Max-Min RR

0

500

1000

1500

2000

2500

Montage LIGO SIPHT

E
n

er
g
y
 C

o
n

su
m

p
ti

o
n

 (
J)

Scientific Workflow

EPSO PSO Max-Min RR

IJT’2024, Vol.04, Issue 02. 12 of 16

ing the total cost by 39.83%, 6.50%, and 24.90% for Montage, LIGO, and SIPHT respectively. It also achieves

better cost reduction than RR by 45.74%, 2.71%, and 19.42% for Montage, LIGO, and SIPHT, respectively.

For 300 tasks execution, when it comes to cost reduction, the suggested EPSO performs better than the other

three algorithms. It achieves higher reductions compared to PSO by 0.39%, 0.81%, and 2.10%, compared to

Max-Min by 45.91%, 16.06%, and 12.23%, and compared to RR by 46.85%, 12.72%, and 8.61% for Montage,

LIGO, and SIPHT, respectively. Finally, for 500 tasks execution, the proposed EPSO continues to outperform the

other three algorithms in terms of reducing the total cost. It achieves higher reductions compared to PSO by

6.94%, -0.61% (indicating that in the case of executing the LIGO workflow, PSO outperforms EPSO in terms of

cost reduction), and 5.11% for Montage, LIGO, and SIPHT respectively. EPSO reduces the total cost compared

to Max-Min by 49.22%, 22.13%, and 15.85%, and compared to RR by 50.95%, 19.26%, and 12.96% for Montage,

LIGO, and SIPHT, respectively. Finally, when executing 500 tasks, the proposed EPSO algorithm outperforms

the other three algorithms in terms of total cost reduction. Compared to PSO, EPSO achieves a cost reduction of

6.94% for Montage, is 0.61% less efficient for LIGO (indicating PSO outperforms EPSO in this case), and is 5.11%

better for SIPHT. When compared to Max-Min, EPSO shows improvements of 49.22%, 22.13%, and 15.85% for

Montage, LIGO, and SIPHT, respectively. Similarly, compared to RR, EPSO yields cost reductions of 50.95%,

19.26%, and 12.96% for the three workflows.

Figure 11. For 100 tasks, cost comparison.

Figure 12. For 300 tasks, cost comparison.

Figure 13. For 500 tasks, cost comparison

The previous results clearly demonstrate the superiority of the proposed EPSO algorithm over other algorithms

across a variety of workflows, particularly in optimizing the makespan metric, which is the focus of this re-

search. EPSO not only outperforms classical PSO but also addresses its premature convergence issue effectively.

Moreover, it's noticeable that EPSO rarely shows the worst performance among the evaluated algorithms. These

outcomes are influenced by the unique characteristics of each workflow instance, particularly as the number of

0

2000

4000

6000

8000

10000

12000

14000

16000

Montage LIGO SIPHT

C
o

st
 (

$
)

Scientific Workflow

EPSO PSO Max-Min RR

0

10000

20000

30000

40000

50000

Montage LIGO SIPHT

C
o

st
 (

$
)

Scientific Workflow

EPSO PSO Max-Min RR

0

10000

20000

30000

40000

50000

60000

70000

80000

Montage LIGO SIPHT

C
o

st
 (

$
)

Scientific Workflow

EPSO PSO Max-Min RR

IJT’2024, Vol.04, Issue 02. 13 of 16

tasks increases, leading to higher metric values due to longer runtimes and larger data sizes in the workflow

DAGs.

Workflows in CyberShake and Epigenomics are notable for involving extensive and time-intensive tasks, re-

sulting in substantially higher performance metrics. These workflows, along with a case study and the perfor-

mance of the algorithms, are detailed in Table 3. For the execution of 100 tasks, the proposed EPSO outperforms

PSO, Max-Min, and RR in reducing Makespan by 0.57%, 0.57%, and 0.57%, respectively for Cybershake and by

34.28%, 53.23%, and 41.22%, respectively for Epigenomics. In terms of energy consumption, EPSO surpasses

PSO, Max-Min, and RR by 71.50%, 0.19%, and 0.93%, respectively, for Cybershake, and by 32.40%, 69.09%, and

62.51%, respectively, for Epigenomics. Regarding cost, EPSO reduces it by 10.88%, 41.99%, and 41.88%, respec-

tively, for Cybershake, but for Epigenomics, PSO outperforms EPSO by 0.58%, while EPSO still outperforms

Max-Min and RR, reducing cost by 21.38% and 15.80%, respectively.

For the execution of 300 tasks, the proposed EPSO outperforms PSO, Max-Min, and RR in reducing Makespan

by 0.63%, 8.45%, and 8.73%, respectively, for Cybershake, and by 36.26%, 31.57%, and 20.70%, respectively, for

Epigenomics. In terms of energy consumption, although PSO surpasses EPSO by 0.41% for Cybershake, EPSO

outperforms Max-Min and RR by 7.20% and 6.14%, respectively. For Epigenomics, EPSO excels in reducing

energy consumption, outperforming PSO, Max-Min, and RR by 43.49%, 39.91%, and 8.10%, respectively. Re-

garding cost, EPSO reduces it by 31.20%, 47.24%, and 49.33%, respectively, for Cybershake, and by 3.07%,

20.05%, and 21.02%, respectively, for Epigenomics compared to PSO, Max-Min, and RR.

Finally, for the execution of 500 tasks, the proposed EPSO outperforms PSO, Max-Min, and RR in reducing

Makespan by 1.76%, 10.71%, and 10.86%, respectively, for Cybershake, and by 29%, 37.06%, and 29.28%, re-

spectively, for Epigenomics. In terms of energy consumption, EPSO surpasses PSO, Max-Min, and RR by 0.19%,

10.05%, and 7.60%, respectively, for Cybershake. For Epigenomics, EPSO excels in reducing energy consump-

tion, outperforming PSO, Max-Min, and RR by 33.36%, 33.46%, and 20.38%, respectively. Regarding cost, EPSO

reduces it by 36.94%, 58.39%, and 60.71%, respectively, for Cybershake, and by 1.49%, 28.45%, and 24.25%, re-

spectively, for Epigenomics compared to PSO, Max-Min, and RR.

Table 3. Algorithms performance for cybershake and epigenomics workflows.

Performance

Metrics

Workflow Cybershake Epigenomics

Algorithm EPSO PSO Max-

Min

RR EPSO PSO Max-M

in

RR

Makespan

(sec)

100 Tasks 103314 103904 103903 103902 44417 67583 94963 75567

300 Tasks 99668 100303 108862 109201 23734 37235 34682 29929

500 Tasks 99731 101522 111699 111886 113677 160111 180609 160736

Energy con-

sumption (J)

100 Tasks 5211 18287 5221 5260 4701 6954 15208 12540

300 Tasks 5185 5164 5587 5524 3699 6595 6156 4025

500 Tasks 5280 5290 5870 5714 17251 25886 25924 21668

Cost ($)

100 Tasks 455138 510703 784527 783124 270056 268479 343512 320723

300 Tasks 143190 208129 271404 282608 155964 160898 195078 197453

500 Tasks 121352 192453 291630 308851 921779 935722 1288316 1216840

Table 3 demonstrates that the EPSO algorithm consistently outperforms other algorithms in reducing the total

completion time (makespan) for both workflows, even as the tasks increase. Amongst the algorithms tested on

the Cybershake workflow, EPSO consistently outperformed the others, particularly in terms of metrics related

to increasing task numbers. While all algorithms achieved similar results for makespan (total completion time),

EPSO demonstrably reduced energy consumption for scenarios with 100, 300, and 500 tasks. Furthermore,

EPSO emerged as the most cost-effective option as the number of tasks increased.EPSO remains impressive for

Epigenomics workflows. It consistently reduces completion time (makespan) compared to other algorithms for

IJT’2024, Vol.04, Issue 02. 14 of 16

all task sizes (100, 300, and 500). EPSO also dominates in saving energy, especially as tasks increase. There's one

exception: for total cost with only 100 tasks, PSO seems to perform slightly better as shown in Table 3.

5. Conclusions

This study proposes a novel approach called Modified Particle Swarm Optimization (EPSO), specifically de-

signed for managing tasks and scheduling scientific workflows within a complex environment that combines

IoT devices, cloud computing, and fog computing. The core reason for developing EPSO lies in overcoming a

frequent issue with the traditional PSO technique: its tendency to converge on solutions too quickly. PSO's

simplicity and ease of use have made it a popular choice for scientific workflow scheduling; however, this study

emphasizes the importance of handling delay-sensitive applications where timing and latency are crucial as-

pects for proper function. The innovation of EPSO lies in its ability to adjust the inertia weight throughout the

process. This allows EPSO to dynamically adapt its behavior, striking a better balance between exploring a

wider range of solutions (exploration) and focusing on promising areas (exploitation). This dynamic approach

has the potential to improve both the speed at which EPSO converges on a solution and the overall quality of

the solution itself. EPSO surpasses all other methods in minimizing makespan across all tested workflows.

Additionally, EPSO demonstrates competitive performance in other metrics such as energy consumption and

cost.

 In the future, our research aims to further refine EPSO and explore the application of a wider range of algo-

rithms for tackling task offloading and scheduling challenges. We plan to utilize a weighted sum objective

function, which will allow for a more nuanced analysis of trade-offs between different factors. Additionally, to

enhance the practicality of EPSO in real-world scenarios, we intend to incorporate constraints such as budget

limitations, deadlines, and resource limitations.

References

1. Hoseiny, F., Azizi, S., & Dabiri, S. (2020, September). Using the power of two choices for real-time task scheduling in

fog-cloud computing. In 2020 4th International Conference on Smart City, Internet of Things and Applications (SCI-

OT) (pp. 18-23). IEEE. doi: 10.1109/SCIOT50840.2020.9250197.

2. Tyagi, R., & Gupta, S. K. (2018). A survey on scheduling algorithms for parallel and distributed systems. In Silicon Pho-

tonics & High Performance Computing: Proceedings of CSI 2015 (pp. 51-64). Springer Singapore.

3. Chen, L., Guo, K., Fan, G., Wang, C., & Song, S. (2020). Resource constrained profit optimization method for task sched-

uling in edge cloud. IEEE Access, 8, 118638-118652, doi: 10.1109/ACCESS.2020.3020225.

4. Varshney, P., & Simmhan, Y. (2020). Characterizing application scheduling on edge, fog, and cloud computing re-

sources. Software: Practice and Experience, 50(5), 558-595.

5. Ali, I. M., Sallam, K. M., Moustafa, N., Chakraborty, R., Ryan, M., & Choo, K. K. R. (2020). An automated task scheduling

model using non-dominated sorting genetic algorithm II for fog-cloud systems. IEEE Transactions on Cloud Compu-

ting, 10(4), 2294-2308.

6. Akbari, M., Rashidi, H., & Alizadeh, S. H. (2017). An enhanced genetic algorithm with new operators for task scheduling

in heterogeneous computing systems. Engineering Applications of Artificial Intelligence, 61, 35-46.

7. Saif, F. A., Latip, R., Derahman, M. N., & Alwan, A. A. (2022, October). Hybrid meta-heuristic genetic algorithm: Differ-

ential evolution algorithms for scientific workflow scheduling in heterogeneous cloud environment. In Proceedings of

the future technologies conference (pp. 16-43). Cham: Springer International Publishing.

8. Tychalas, D., & Karatza, H. (2020, November). An advanced weighted round robin scheduling algorithm. In Proceedings

of the 24th Pan-Hellenic Conference on Informatics (pp. 188-191). https://doi.org/10.1145/3437120.3437304.

9. Azizi, S., Shojafar, M., Abawajy, J., & Buyya, R. (2022). Deadline-aware and energy-efficient IoT task scheduling in fog

computing systems: A semi-greedy approach. Journal of network and computer applications, 201, 103333.

IJT’2024, Vol.04, Issue 02. 15 of 16

10. Murad, S. S., Badeel, R. O. Z. I. N., Salih, N. A. S. H. A. T., Alsandi, A., Faraj, R., Ahmed, A. R., ... & Alsandi, N. (2022).

Optimized Min-Min task scheduling algorithm for scientific workflows in a cloud environment. J. Theor. Appl. Inf.

Technol, 100(2), 480-506.

11. Versluis, L., & Iosup, A. (2021). A survey of domains in workflow scheduling in computing infrastructures: Community

and keyword analysis, emerging trends, and taxonomies. Future generation computer systems, 123, 156-177.

12. Chen, G., Qi, J., Sun, Y., Hu, X., Dong, Z., & Sun, Y. (2023). A collaborative scheduling method for cloud computing het-

erogeneous workflows based on deep reinforcement learning. Future Generation Computer Systems, 141, 284-297.

13. Subramoney, D., & Nyirenda, C. (2021, November). Pso-based workflow scheduling: A comparative evaluation of cloud

and cloud-fog environments. In South-ern Africa Telecommunication Networks and Applications Conference

(SATNAC) (Vol. 2021, pp. 258-262).

14. He, J., & Bai, W. (2023, February). Computation offloading and task scheduling based on improved integer particle

swarm optimization in fog computing. In 2023 3rd International Conference on Neural Networks, Information and

Communication Engineering (NNICE) (pp. 633-638). IEEE.

15. Liu, X., Fan, L., Xu, J., Li, X., Gong, L., Grundy, J., & Yang, Y. (2019, November). FogWorkflowSim: An automated simu-

lation toolkit for workflow performance evaluation in fog computing. In 2019 34th IEEE/ACM International Conference

on Automated Software Engineering (ASE) (pp. 1114-1117). IEEE.

16. Subramoney, D., & Nyirenda, C. N. (2020, December). A comparative evaluation of population-based optimization al-

gorithms for workflow scheduling in cloud-fog environments. In 2020 IEEE Symposium Series on Computational Intel-

ligence (SSCI) (pp. 760-767). IEEE.

17. Pham, X. Q., Man, N. D., Tri, N. D. T., Thai, N. Q., & Huh, E. N. (2017). A cost-and performance-effective approach for

task scheduling based on collaboration between cloud and fog computing. International Journal of Distributed Sensor

Networks, 13(11), 1550147717742073.

18. Gamal, M., Awad, S., Abdel-Kader, R. F., & Abd El Salam, K. (2024). Efficient offloading and task scheduling in internet

of things-cloud-fog environment. International Journal of Electrical and Computer Engineering (IJECE), 14(4), 4445-4455.‏

http://doi.org/10.11591/ijece.v14i4.pp4445-4455.

19. Memari, P., Mohammadi, S. S., Jolai, F., & Tavakkoli-Moghaddam, R. (2022). A latency-aware task scheduling algorithm

for allocating virtual machines in a cost-effective and time-sensitive fog-cloud architecture. The Journal of Supercompu-

ting, 78(1), 93-122.‏ https://doi.org/10.1007/s11227-021-03868-4.

20. Ali, I. M., Sallam, K. M., Moustafa, N., Chakraborty, R., Ryan, M., & Choo, K. K. R. (2020). An automated task scheduling

model using non-dominated sorting genetic algorithm II for fog-cloud systems. IEEE Transactions on Cloud Compu-

ting, 10(4), 2294-2308.‏

21. Fellir, F., El Attar, A., Nafil, K., & Chung, L. (2020, February). A multi-Agent based model for task scheduling in

cloud-fog computing platform. In 2020 IEEE international conference on informatics, IoT, and enabling technologies

(ICIoT) (pp. 377-382). IEEE.

22. Yadav, A. M., Sharma, S. C., & Tripathi, K. N. (2021). A Two-Step Technique for Effective Scheduling in Cloud–Fog

Computing Paradigm. In Advances in Computational Intelligence and Communication Technology: Proceedings of

CICT 2019 (pp. 367-379). Springer Singapore. https://doi.org/10.1007/978-981-15-1275-9_30

23. Farid, M., Latip, R., Hussin, M., & Hamid, N. A. W. A. (2020). Scheduling scientific workflow using multi-objective algo-

rithm with fuzzy resource utilization in multi-cloud environment. IEEE Access, 8, 24309-24322.

24. Subramoney, D., & Nyirenda, C. N. (2022). Multi-swarm PSO algorithm for static workflow scheduling in cloud-fog en-

IJT’2024, Vol.04, Issue 02. 16 of 16

vironments. IEEE Access, 10, 117199-117214.

25. Yassa, S., Chelouah, R., Kadima, H., & Granado, B. (2013). Multi‐objective approach for energy‐aware workflow sched-

uling in cloud computing environments. The Scientific World Journal, 2013(1), 350934.

26. Kennedy, J., & Eberhart, R. (1995, November). Particle swarm optimization. In Proceedings of ICNN'95-international

conference on neural networks (Vol. 4, pp. 1942-1948). ieee.

27. Bharathi, S., Chervenak, A., Deelman, E., Mehta, G., Su, M. H., & Vahi, K. (2008, November). Characterization of scientific

workflows. In 2008 third workshop on workflows in support of large-scale science (pp. 1-10). IEEE.

28. The Pegasus Website. Accessed: Jan. 10, 2022. [Online]. Available: https://pegasus.isi.edu/

