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Abstract: The explosion of devices and their varied uses in the Internet of Things (IoT) 

have created a massive quantity of data that requires significant processing power. Fog 

computing, as a prolongation of cloud computing, presents a promising new model by 

bringing processing power closer to users through fog servers. Compared to accessing 

distant cloud servers, this significantly reduces latency, or the required time for data to 

travel. This setup allows users to offload tasks to nearby servers, ultimately improving the 

Quality of Service (QoS) they experience. Finding the best match between workflow tasks 

and available resources is critical to minimizing completion time (makespan), especially 

in delay-sensitive applications requiring fast data processing. However, achieving this 

optimal match remains a challenge. This work proposes an Enhanced Particle Swarm 

Optimization (EPSO) algorithm specifically designed to address this challenge. The per-

formance of EPSO is compared against PSO, Max-Min, and Round-Robin (RR) scheduling 

methods. Simulations are conducted using diverse scientific workflow domains. The re-

sults demonstrate that EPSO outperforms all other methods in minimizing makespan 

across all tested workflows. Furthermore, EPSO exhibits competitive performance in 

other metrics like energy consumption and cost while maintaining greater stability and 

reliability. 

Keywords: Cloud-Fog Computing; Offloading; Scientific Workflow; PSO; Task Schedul-

ing. 

 

1. Introduction 

The telecommunication networks’ growth is a major driver behind the booming Internet of Things (IoT). Sen-

sor-equipped devices are key to gathering data, but their limited processing power means this information 

must be transferred to the cloud for storage, analysis, and decision-making. While cloud computing offers 

convenient access to powerful resources, it can't always keep up with the real-time needs of certain IoT appli-

cations [1]. Fog computing complements rather than replaces cloud computing, collaborating to handle diverse 

task lengths and computations. With widespread edge-cloud adoption, user requests vary between cloud and 

fog nodes based on task performance metrics, requiring processing to meet user needs [2]. The different char-

acteristics of fog and cloud, along with unpredictable user requests and resource constraints, complicated task 

scheduling necessitating, discussion, and attention.   

Offloading and task scheduling significantly influences system performance by minimizing network overhead, 

maximizing resource utilization, and reducing energy consumption [3]. Task scheduling primarily involves 

mapping tasks to suitable resources to ensure task execution completion while meeting the QoS requirements 
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[4]. Despite the notable advantages of fog-cloud collaboration, task scheduling encounters challenges stemming 

from resource demands, task configurations, and its dynamic nature. These factors affect the QoS optimization, 

necessitating parameter adjustments and the selection of suitable fog and cloud resources [5]. The primary ob-

jective of optimization in task scheduling is to minimize or maximize specific functions. Optimization metrics 

include makespan, energy consumption, delay, and cost among others [4]. Scheduling utilizes meta-heuristic 

algorithms to approximate optimal solutions, often involving randomized search methods, because it is con-

sidered Nondeterministic Polynomial (NP)-complete [6]. As a result, many popular population-based algo-

rithms are used for scheduling workflow, such as PSO, Simulated Annealing (SA), Ant Colony Optimization 

(ACO), and Genetic algorithm (GA) [7]. In addition, there are many more non intelligence (classical) algorithms 

as Round Robin (RR) [8], First Come First Serve [9] (FCFS), Max-Min [10]. 

Tasks are conceptualized as workflows in numerous IoT applications. A workflow comprises interdependent 

tasks that must be executed with designated priorities and in a specific sequence [11]. Task scheduling is de-

picted as Directed Acyclic Graph (DAG) in a workflow. Each node represents a task, with the weight indicating 

its computational cost or runtime. The prerequisite relationships between tasks are denoted by the edges of the 

graph [11, 12], forming the workflow. The objective may include minimizing cost, energy consumption, storage 

space usage, data transfer time, overall runtime, or a combination of these factors. 

Building on the proposed work [13, 14], this research investigates the performance of PSO algorithm specifically 

for workflow scheduling within the novel three-tier IoT-cloud-fog environment illustrated in Figure 1. In con-

trast to [14], which focused solely on fog computing, this research investigates EPSO's effectiveness within the 

broader cloud-fog computing paradigm. The EPSO uses linearly decreasing inertia weight allowing particles to 

explore the search space greatly in the initial stages. That increases the chance of finding promising regions 

containing the optimal solution. As the inertia weight linearly decreases over time, the particles' exploration 

range contracts. This focuses their search on exploiting the identified promising region, leading to faster con-

vergence towards the optimum. Comparative analysis of EPSO, PSO, Max-Min, and RR scheduling algorithms 

based on performance metrics as cost, energy consumption, and makespan demonstrates the effectiveness of 

this approach. The newly developed method focuses on reducing the time required to complete numerous jobs 

(makespan), prioritizing it as the objective function due to its significant effect on enhancing user satisfaction 

and increasing the productivity of computational resources. This work is implemented on FogWorkflowSim 

[15]. 

 
Figure 1. Paradigm of cloud-fog collaboration [4]. 

 

There are many recent researches on task offloading and scheduling in fog-cloud collaboration. Tychalas and 

Karatza [8] built upon the weighted round-robin algorithm to propose a dynamic probabilistic load balancing 

approach. This method assigns probabilities to available resources based on a combination of their computa-

tional power and how busy they currently are, as measured by key server metrics. 

Subramoney and Nyirenda [13] compared cloud and fog-cloud collaboration using the well-established PSO for 

workflow scheduling. A weighted objective function that considers three key factors: cost, makespan, and en-
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ergy consumption is presented. Additionally, they leverage the recently developed FogWorkflowSim to simu-

late both cloud and cloud-fog architectures. 

Subramoney and Nyirenda [16] proposed a comparative assessment of population-based methods for work-

flow tasks scheduling in IoT-fog-cloud environments.  

Pham et al. [17] declared the trade-off between makespan and cost, alongside meeting deadline constraints in 

task scheduling. It introduces a heuristic algorithm called Cost-Makespan aware Scheduling (CMaS) to manage 

these competing objectives. 

M Gamal et al. [18] introduced three offloading strategies designed for IoT-fog-cloud environments, particu-

larly targeting real-time applications. LCO is optimal for tasks requiring low latency. EBO prioritizes energy 

efficiency and computationally intensive tasks. EO aims to strike a balance between latency and energy con-

sumption, optimizing resource utilization. 

P. Memari et al. [19] introduced for resource allocation a tabu search method. Tabu search is chosen due to its 

versatility across various optimization problems and its advantages in memory and speed. The research focuses 

on tackling the problem of finding the most efficient allocation to optimize the utilization of resources and 

minimize response time. To address this challenge, a tabu search method is proposed to mitigate hardware 

costs. Furthermore, using meta-heuristic approaches, the study presents a latency-aware scheduling algorithm 

based on Virtual Machine (VM) matching. The tabu search is enhanced through the integration of Fruit Fly 

Optimization (FOA) algorithms and Approximate Nearest Neighbor (ANN) techniques. 

Ali et al. [20] suggested a task scheduling method using the Multi-objective Optimization Problem (MOP) to 

minimize both makespan and cost. This approach utilizes a model incorporating Discrete Non-dominated 

Sorting Genetic Algorithm II (DNSGA-II) to allocate tasks automatically to fog or cloud devices. The model 

effectively distributes the workload among cloud and fog nodes.  

Fellir et al. [21] addressed task scheduling with a model of multi-agent that prioritizes tasks based on a combi-

nation of factors: priority, waiting time, and resource availability. Yadav et al. [22] addressed the cloud 

makespan and cost trade-off by proposing the Budget-Aware Scheduling (BAS) algorithm for sequencing ap-

plications. The technique focuses on scheduling applications on a timeline to ensure their timely execution, 

thereby reducing the required expenditures for utilizing cloud resources. It aims to enhance resource utiliza-

tion.  

Farid et al. [23] tackled the Multi-objective Optimization Problem (MOP) by employing a PSO approach based 

on fuzzy resource utilization in workflow scheduling. The objective is to reduce costs and makespan while 

ensuring reliability constraints are met. Moreover, the research simultaneously accounts for both data trans-

portation order and task execution location. Subramoney and Nyirenda [24] introduced a method called mul-

ti-swarm particle swarm optimization (MS-PSO) to enhance the scheduling of scientific tasks in IoT-cloud-fog 

systems and addresses the premature convergence issue of classic PSO. Table 1 provides a concise overview of 

the methodologies and critical parameters addressed by each task scheduling algorithm in the mentioned ref-

erences. 

The paper's remaining sections are organized as follows: Section 2 contains studies on offloading and task 

scheduling algorithms. Section 3 details the scheduling of workflow and performance metrics. Section 4 details 

the concept of workflow and the proposed method. Section 5 discusses the experimental outcomes. Finally, 

Section 6 demonstrates the research’s conclusion. 

Table 1. comparison of current methods for task scheduling. 

Authors Technique used Objective criteria  

Tychalas et al. [8] An advanced Weighted Round Robin 

algorithm 

load balancing 

task execution, and time 

Subramoney et al. 

[13] 

PSO with a weighted sum objective 

function 

Makespan, energy consumption, and cost 

Table 1. (Continued.) comparison of current methods for task scheduling. 

Subramoney et al. Evaluation of workflow scheduling Makespan, energy consumption, and cost  
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[16] across cloud and fog infrastructures 

Pham et al. [17] Collaborative task scheduling between 

cloud and fog 

cost 

Gamal, M et al. [18] Three offloading strategies (LCO, EBO, 

and EO) 

Makespan, energy consumption, and cost 

Memari et al. [19] latency-aware scheduling approach in 

cloud-fog 

Latency, and cost 

Ali et al. [20] Non-dominated Sorting Genetic Algo-

rithm II (NSGA-II) 
Execution time, makespan, and energy 

consumption  

 

Fellir et al. [21] A multi-agent system  execution time, resource utilization, and 

energy consumption 

Yadav et al. [22] Task classification, and resource alloca-

tion 

Latency, and resource utilization 

 

Farid et al. [23] Multi-Objective Optimization Algo-

rithm 

Cost, and execution time 

Subramoney et al. 

[24] 

Multi-Swarm PSO Execution time, makespan, energy con-

sumption, and load balancing  

2. Methodology of workflow scheduling 

2.1. The notion of Workflow  

The concept of workflow application is illustrated through a DAG, represented by G = (T, E), where T repre-

sents vertices denoting tasks from t1 to tn and edges E [16, 23] denoting task dependencies. Each edge represents 

data inter-task, denoted as di, j =< ti, tj > ∈ E, with di, j denoting the size of output data from task ti to task tj. Task tj 

begins execution after task ti is completed. A task ti without a parent is considered a starting task, while a task tj 

without a child is regarded as an ending task. Figure 2 shows a workflow example with nine tasks. Tasks on the 

same level (appearing side-by-side) can be done at the same time. For instance, tasks t2, t3, and t4 can all be run 

concurrently. 

In an IoT-cloud-fog environment, workflow application offloading and scheduling involve assigning tasks 

within a workflow to various computing resources. These resources have unique characteristics, and the goal is 

to achieve optimal workflow execution by minimizing three factors: total completion time (makespan), energy 

consumption, and overall cost. 

2.2. Performance metrics 

This setup includes three primary computational resources categories of: end devices, fog servers, and cloud 

servers. These resource groups encompass processing and storage capacities, as well as bandwidth, memory, 

and the requirements of power. The computational assets within the fog and cloud segments are represented as 

VMs. The inclusion of end devices is justified by the fact that certain minor tasks are more efficiently handled 

locally, considering economic and resource efficiency, rather than being offloaded to fog and cloud servers. 

This research prioritizes a single optimization goal to identify the most efficient approach for both task of-

floading and resource selection. This objective focuses on minimizing makespan of the workflow. However, the 

study also considers other factors like energy consumption and total costs. 

2.2.1. Makespan 

The workflow makespan, which represents the total time needed to complete the entire workflow successfully, 

is calculated using the following formula: 

                                 (1) 
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, Where STti represents the starting time and FTti signifies the task ti finishing time within a specific workflow.  

2.2.2. Energy consumption 

Energy consumption [25] is established using idle and active components, represented as Eidle and Eactive re-

spectively. The first one pertains to energy utilized during resource idleness, whereas the second represents 

energy expended during task execution. The energy expended during the idle interval [13, 25] is calculated as 

follows: 

 

      ∑ ∑                 

 
           

 
                 

(2) 

, Where idlei,k corresponds to a collection of periods of idle slot k on resource j, and fmin j represents the frequency 

along with Vmin j that denotes the minimum voltage for resource j, correspondingly. Lj,k represents the duration 

of the idle time for idlei,k. Therefore, the active energy is determined by.  

 

        ∑      
 
  (         ) 

 
         (3) 

, Where α represents a fixed number, while fi and Vi represent the frequency and supply voltage of the task i 

executed resource. When the resource is in an idle state, it enters sleep mode, characterized by the lowest volt-

age supply and a relative frequency. The overall energy consumption (TE) across the IoT-cloud-fog system en-

tire workflow during the execution is given by: 

 

                       (4) 

 

2.2.3. Cost 

This encompasses both communication and computation expenditures. Computational costs are applicable 

across all three types of computational resources, However, when tasks are carried out on the end device, 

communication costs are not incurred. The computational cost [25] associated with the utilization of resource 

for computing r is outlined like follows: 

   
     (         )       (5) 

 

, Where the cost of unit processing is represented as pr. The communication cost, that indicates the data trans-

mission expenditure for conveying a task's output of dimension di, j from the executed resource for task i to the 

designated resource handling task j, is established by: 

 

                         (6) 

 

Here, trci,j represents the individual communication cost from the selected resource for task i to the allocated 

resource for task j. trci,j is equal to 0 if both tasks are performed on the identical resource. Consequently, for a 

scenario involving n tasks and m computational resources, the overall cost TC can be expressed as follows: 

 

   ∑ ∑      
 
   

 
    ∑ ∑    

  
   

 
                         (7) 

 

This study emphasizes minimizing the time needed to complete multiple tasks (makespan) presented in equa-

tion (1), considering it as the primary objective to improve user satisfaction and enhance the productivity and 

efficiency of computational resources. Therefore, the objective function is defined as follow: 
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 ( )                           (8) 

                                                                 

, Where p presents the assignment of a workflow's n tasks to the m available computing resources. In PSO 

terminology, p is known as a particle. 

3. Proposed EPSO 

EPSO is an extension of PSO which is a computational method proposed by Kennedy and Eberhart [26] used for 

solving optimization problems. Motivated by the social behavior of fish gathering or birds schooling, PSO 

simulates the social behavior of individuals (particles) within a swarm. Each particle denotes a potential solu-

tion to the optimization issue, and the swarm collectively searches the solution space to find the optimal solu-

tion. PSO is simple and relatively easy to understand and implement. But it suffers from premature conver-

gence issue due to constant inertia weight. So, Linearly Decreasing Weight EPSO tackles this issue by intro-

ducing a dynamic inertia weight by using a weight that starts high and linearly decreases over time.  

3.1. Particle representation 

This section explains the particle denoted by "p," which is involved in the objective function in Eq. (8), before 

going over the rationale for the proposed EPSO. In this study, the tasks within the workflows can be arranged 

for implementation either at the source (end device), a cloud VM, or a fog VM. End devices do not delegate their 

tasks to other end devices; rather, they can only assign tasks to cloud and fog resources. Consequently, when 

scheduling workflows, only a single representative end device is included in the encoding process. Given that 

scheduling tasks in a cloud-fog environment is inherently discrete, natural numbers are employed to encode 

individuals for the proposed EPSO algorithm. 

This section focuses on the concept of particles. These particles represent mappings between tasks and the re-

sources they'll be executed on. Each particle, "p", is a one-dimensional vector with a length equal to the total 

number of tasks (T) in the workflow. Each element (position) within this vector indicates the specific VM as-

signed to a particular task. The value at each position is an integer ranging from 1 to R, where R represents the 

total number of available resources in the FogWorkflowSim environment. 

For example, imagine Figure 3 depicts a workflow with T=8 tasks that need to be mapped to an IoT-cloud-fog 

environment with R=5 available resources (including 2 cloud VMs and 2 fog VMs). In this scenario, the particle 

p = {3, 5, 2, 4, 1, 3, 2, 5} represents a potential mapping solution. Each value in the particle vector corresponds to 

a task, and the value itself indicates the assigned VM (between 1 and 5) for that specific task. 

 

 

Figure 2. Workflow of nine tasks example [4]. 

 

Figure 3. Workflow scheduling example [4]. 

 

3.2. Workflow Scheduling Using EPSO 

EPSO is a technique for optimizing how tasks within a scientific workflow are assigned to computing resources. 

The goal is to find the most efficient allocation that considers reducing in makespan as objective function. In this 

approach, particles represent a population of individuals; they navigate through a given solution space based 
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on their current positions xki and velocities vki for the kth iteration. The quality of each particle is assessed by 

applying a predetermined fitness function that is specific to the optimization issue. Each particle's best-known 

personal position pBesti affects how it moves as well as the best-known global position gBest for the whole 

swarm. 

This iterative process guides the swarm towards the optimal position. EPSO’s overview is explained in Algo-

rithm 1 as: 

 Initialize EPSO parameters like the number of particles (N), search space boundaries, minimal and 

maximal inertia weight, learning factors, and maximum iterations (G). 

 Generate a swarm of particles with random positions (representing task schedules) and velocities 

within the search space. 

 Calculate the fitness of each particle's schedule using makspan metric using Eq. (8). 

 For each particle, update its personal best position (pbest) if the current schedule has better fitness. 

 Find which particle has the best fitness (gbest) in the entire population. 

 For each iteration do: 

 Linearly decrease the inertia weight (𝜔) from its maximal value (𝜔begin) to a minimal (𝜔end) as: 

        (           )  
      

    
                      

, Where 𝜔begin is a starting value of inertia weight, 𝜔end is finishing value, tmax is the total iter-

ation number and t represents the current iteration.                

(9) 

 Update the velocity of each particle based on its current velocity, the difference between its po-

sition and pbest/gbest, and the new inertia weight as follow: 

  
       

        (          
 )    

                          (         
 ) 

 

  (10) 

, where i represents Particle number, ω is the inertia weight; r1 and r2 are represented randomly 

between (0,1); and c1 and c2 are the learning factors. 

 Update the position of each particle based on its current position and velocity.as follow: 

  
      

    
                                     (11) 

 Calculate the fitness of the particles' schedules after position update. 

 If a particle's new position has better fitness, update its pbest. 

 Verify if the total number of iterations has been reached. 

 If the termination condition is met, exit the loop and return the best solution (the schedule). 

Due to the simplicity of the Socio-Cognitively Inspired standard PSO [13], this work adopts it, but on other 

hand it suffers from Premature Convergence. Furthermore, in this technique, to schedule particle positions, first 

discretize each dimension variable into an integer in the fog server set p= {1, 2, …., n} as in previous subsection. 

This ensures that particle positions match task scheduling. Secondly, decreasing 𝜔 linearly over iterations by 

using a weight that starts high and linearly decreases over time. This can help in fine-tuning the search behavior 

of particles during different stages of the optimization process. It ensures that particles continue to explore the 

search space, preventing premature convergence. 

EPSO achieves a better balance between exploration and exploitation compared to standard PSO with a fixed 

weight. This can lead to finding better schedules that optimize resource utilization and minimize execution 

time. On other hand a very rapid decrease in 𝜔 might limit exploration too early, hindering the discovery of 

diverse solutions. 

Algorithm 1 depicts the EPSO optimization method. The parameters N represents the number of particles and 

G denotes the number of generations. The remaining parameters are defined in previous subsections. The al-

gorithm begins with the initialization of N, c1, c2, ω, and G. The process involves constructing N particles and 
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evaluating them using the Fogworkflowsim toolbox [15]. To determine the global and personal optimal values, 

the value of fitness function is evaluated. Then the algorithms start a repeated process for G generations. Based 

on improved values, the system modifies the personal and global best values. 

Algorithm 1 EPSO algorithm 

1: Set   G, c1, c2, 𝜔begin, 𝜔end, and N      ► Inputs 

2: gBest and its evaluation F(gBest)         ► outputs 

3: N particles randomly generated 

4:   F(gBest) = 0 

5: for i ≤ N do 

6: Call up the workflow scheduler 

7: Fitness value computed, F(xi) for particle i using Eq.8 

8: set pBesti equal xi 

9: F(pBesti) = F(xi) 

10: if F(xi) > F(gBest) then 

11: gBest = xi 

12: F(gBest) = F(xi) 

13: end if 

14: end for 

15: t = 0                                               ► initialize t 

16: while t ≤ G do 

17: for k ≤ N do 

18: Update ωt as Eq. 9 

19:  Update vk and xk by applying Eq. 10 and Eq. 11 

20: Call up the workflow scheduler 

21: Fitness value computed, F(xk), as in Eq. 8 

22: if F(xk) > F(pBestk) then 

23: pBestk = xk 

24: F(pBestk) = F(xk) 

25: end if 

26: if F(xk) > F(gBest) then 

27: gBest =xk  

28: F(gBest) = F(xk) 

29: end if 

30: end for 

31: t=t+1 

32: end while 

4. Performance evaluation 

This section commences by providing an overview of the workflow models and outlines the setup of the sim-

ulation environment using the FogWorkflowSim Toolkit [15]. Following these initial details, the section pro-

ceeds to present the experimental results and engage in a discussion thereof. 

4.1. Workflow models 

This research employs five established scientific workflows [27] from diverse scientific fields to thoroughly 

assess the effectiveness of the proposed method. These scientific workflows, described by the Pegasus frame-

work [28], utilize XML files containing DAG representations as input for the simulations. Workflows involve 
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several tasks, dependencies, run-times, and data transfers. Fig. 4 illustrates the workflows in a graphical ar-

rangement.  

 
Figure 4. Scientific workflows’ structure [4]. 

The workflows are outlined below: 

1) Montage Workflow: This workflow simulates an application of astronomy that generates custom mo-

saics of the sky from utilizing several input images. 

2) CyberShake Workflow: This workflow is used to assess and characterize earthquake hazards posing a 

threat to a specific region. 

3) Epigenomics Workflow: Applied in the field of bioinformatics, this workflow automates various op-

erations involved in processing genome sequences. 

4) LIGO Workflow: It's a detector that uses lasers to measure incredibly tiny vibrations in spacetime, with 

the goal of directly observing gravitational waves. 

5) Sipht Workflow: Developed to automate the search for small RNA (sRNA) encoding genes across all 

bacterial replications. 

4.2. Simulation environment 

The FogWorkflowSim simulator is executed using the Eclipse Java IDE. The simulations are conducted on a 

computer system equipped with a 64-bit Windows 10 operating system, an Intel (R) Core (TM) i7- M 640 @ 2.80 

GHz, and 6 GB of RAM. Each algorithm was run with 10 particles. 

In EPSO, learning factors C1 and C2 are set to 2, while the initial and final inertia weights (𝜔begin and 𝜔end) are 

0.8 and 0.3, respectively. To evaluate average performance, simulations are carried out 10 times for each work-

flow. PSO uses an inertia weight of 1 and learning factors of 2 for C1 and C2. The simulation environment in-

volved ten cloud VMs, six fog VMs, and one end device. The specific characteristics of each server in the 

three-layer IoT-fog-cloud architecture, along with the detailed parameter configurations, are presented in Table 

2. 

Table 2. IoT-cloud-fog environment parameter setting. 

Parameters End device Fog VM Cloud VM 

Rate of Processing (MIPS) 1000 1300 1600 

Task execution Cost ($) 0 0.48 0.96 

Communication Cost ($) 0 0.01 0.02 

Busy Power (MW) 700 800 1600 

Idle Power (MW) 30 40 1300 

Uplink Bandwidth (Mbps) 20 10 1 

Downlink Bandwidth (Mbps) 40 10 10 



IJT’2024, Vol.04, Issue 02. 10 of 16 
 

 

4.3. Simulation results 

The performance of EPSO algorithm is evaluated against three other scheduling methods: PSO, Max-Min, and 

Round- RR. All four algorithms are compared under the same simulated conditions to ensure a fair assessment.  

Figures 5, 6, and 7 show how different scheduling algorithms perform on Montage, LIGO, and SIPHT work-

flows when the number of tasks varies (100, 300, and 500 tasks). Interestingly, all algorithms seem to perform 

about the same for Montage workflows regardless of the number of tasks. 

EPSO algorithm demonstrably outperformed other compared methods (PSO, Max-Min, and RR) on all three 

workflow benchmarks: Montage, LIGO, and SIPHT. Specifically, EPSO achieved significant reductions in 

makespan. On the Montage workflow, EPSO's average improvement was 36.78% over PSO, 44.05% over 

Max-Min, and a substantial 44.66% over RR. In LIGO execution, EPSO impressively reduced the makespan by 

36.57% compared to PSO, 24.39% compared to Max-Min, and 27.16% compared to RR. Finally, for the SIPHT 

workflow, EPSO continued to exhibit superior performance with improvements in makespan of 4.78% com-

pared to PSO, 20.23% compared to Max-Min, and a noteworthy 32.24% improvement over RR. 

For different workflows, EPSO ranks the best performance once 300 tasks are completed. For Montage, LIGO, 

and SIPHT, it reduces makespan compared to PSO by 8.47%, 28.29%, and 35.91%, respectively. It decreases 

makespan by 23.92%, 37.46%, and 25.38% in comparison to Max-Min. Ultimately, it achieves reductions in 

makespan of 24%, 27.06%, and 32.97% for different workflows when compared to RR.  

Finally, when executing 500 tasks, EPSO displays the most favorable performance in terms of makespan be-

cause it decreases makespan more than other algorithms for all workflows. It reduces makespan than PSO by 

12.92%, 21.23%, and 40.10% for Montage, LIGO, and SIPHT, respectively; Max-Min by 23.05%, 23.38%, and 

36.70%; and RR by 23.55%, 8.19%, and 43.45%. 

Figures 8, 9, and 10 show the energy consumption metric's average performance results for the three workflows 

across varying task sizes: 100, 300, and 500 tasks. For 100 task execution Montage exhibits the smallest energy 

consumption. Proposed EPSO outperforms other algorithms except for SIPHT workflow PSO shows the best 

performance. It has more favorable performance by decreasing energy consumption than PSO by 38.50% and 

61.02% for Montage and LIGO, while PSO excels EPSO for SIPHT by decreasing energy consumption 7.03% 

than it. EPSO presents better performance by 58.84% and 44.18% than Max-Min, and RR respectively for LIGO 

workflow. Finally, Max-Min presents the best performance for SIPHT. It decreases energy consumption com-

pared to 

EPSO by 16.54%. While RR presents the lowest performance it shows increasing in energy consumption com-

pared to EPSO by 7.83%. 

For the execution of 300 tasks, the Max-Min algorithm performs the poorest across three workflows, while 

EPSO consistently surpasses other algorithms. In the Montage workflow, EPSO reduces energy consumption by 

10.93%, 27.06%, and 19.28% compared to PSO, Max-Min, and RR, respectively. EPSO also achieves the best 

performance in the LIGO workflow, lowering energy consumption by 18.96%, 33.35%, and 22.97% compared to 

PSO, Max-Min, and RR, respectively. Similarly, in the SIPHT workflow, EPSO reduces energy consumption by 

34.97%, 54.29%, and 40.77% compared to PSO, Max-Min, and RR. These results indicate that EPSO is the most 

favorable algorithm for reducing energy consumption in the 300-task case study for both the LIGO and SIPHT 

workflows. 

With the execution of 500 tasks, the Max-Min algorithm consistently demonstrates the weakest performance 

compared to other algorithms. Meanwhile, PSO for the SIPHT workflow yields the lowest efficiency. The mod-

ified EPSO algorithm outperforms the other algorithms across various workflows, with the exception of the 

LIGO workflow. Specifically, in the Montage workflow, EPSO achieves significant energy savings, reducing 

consumption by 63.62%, 70.77%, and 20.19% compared to PSO, Max-Min, and RR, respectively. In the LIGO 

workflow, EPSO reduces energy consumption by 20.22% and 21.07% compared to PSO and Max-Min, though 

RR achieves a further reduction of 9.19% compared to EPSO. 
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Figure 5. For 100 tasks, makespan comparison. 

 

Figure 8. For 100 tasks, energy consumption comparison. 

 

Figure 6. For 300 tasks, makespan comparison. 

 

Figure 9. For 300 tasks, energy consumption comparison. 

 

Figure 7. For 500 tasks, makespan comparison. 

 

Figure 10. For 500 tasks, energy consumption comparison. 

 

Figures 11, 12, and 13 illustrate the average performance results of the total cost metric for the five workflows 

across varying task sizes: 100, 300, and 500 tasks. As the number of tasks increases, Montage consistently pre-

sents the lowest cost. For the LIGO and SIPHT workflows, there is a slight increase in cost when the quantity of 

tasks increases. 

For the execution of 100 tasks, the proposed EPSO outperforms PSO in reducing costs by 18.22%, 10.88%, and 

3.91% for Montage, LIGO, and SIPHT, respectively. However, PSO demonstrates better performance in cost 

reduction compared to EPSO for LIGO by 3.51%. EPSO achieves higher performance than Max-Min by reduc-
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ing the total cost by 39.83%, 6.50%, and 24.90% for Montage, LIGO, and SIPHT respectively. It also achieves 

better cost reduction than RR by 45.74%, 2.71%, and 19.42% for Montage, LIGO, and SIPHT, respectively. 

For 300 tasks execution, when it comes to cost reduction, the suggested EPSO performs better than the other 

three algorithms. It achieves higher reductions compared to PSO by 0.39%, 0.81%, and 2.10%, compared to 

Max-Min by 45.91%, 16.06%, and 12.23%, and compared to RR by 46.85%, 12.72%, and 8.61% for Montage, 

LIGO, and SIPHT, respectively. Finally, for 500 tasks execution, the proposed EPSO continues to outperform the 

other three algorithms in terms of reducing the total cost. It achieves higher reductions compared to PSO by 

6.94%, -0.61% (indicating that in the case of executing the LIGO workflow, PSO outperforms EPSO in terms of 

cost reduction), and 5.11% for Montage, LIGO, and SIPHT respectively. EPSO reduces the total cost compared 

to Max-Min by 49.22%, 22.13%, and 15.85%, and compared to RR by 50.95%, 19.26%, and 12.96% for Montage, 

LIGO, and SIPHT, respectively. Finally, when executing 500 tasks, the proposed EPSO algorithm outperforms 

the other three algorithms in terms of total cost reduction. Compared to PSO, EPSO achieves a cost reduction of 

6.94% for Montage, is 0.61% less efficient for LIGO (indicating PSO outperforms EPSO in this case), and is 5.11% 

better for SIPHT. When compared to Max-Min, EPSO shows improvements of 49.22%, 22.13%, and 15.85% for 

Montage, LIGO, and SIPHT, respectively. Similarly, compared to RR, EPSO yields cost reductions of 50.95%, 

19.26%, and 12.96% for the three workflows. 

 

Figure 11. For 100 tasks, cost comparison. 

 

Figure 12. For 300 tasks, cost comparison. 

 

 

Figure 13. For 500 tasks, cost comparison 

The previous results clearly demonstrate the superiority of the proposed EPSO algorithm over other algorithms 

across a variety of workflows, particularly in optimizing the makespan metric, which is the focus of this re-

search. EPSO not only outperforms classical PSO but also addresses its premature convergence issue effectively. 

Moreover, it's noticeable that EPSO rarely shows the worst performance among the evaluated algorithms. These 

outcomes are influenced by the unique characteristics of each workflow instance, particularly as the number of 
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tasks increases, leading to higher metric values due to longer runtimes and larger data sizes in the workflow 

DAGs. 

Workflows in CyberShake and Epigenomics are notable for involving extensive and time-intensive tasks, re-

sulting in substantially higher performance metrics. These workflows, along with a case study and the perfor-

mance of the algorithms, are detailed in Table 3. For the execution of 100 tasks, the proposed EPSO outperforms 

PSO, Max-Min, and RR in reducing Makespan by 0.57%, 0.57%, and 0.57%, respectively for Cybershake and by 

34.28%, 53.23%, and 41.22%, respectively for Epigenomics. In terms of energy consumption, EPSO surpasses 

PSO, Max-Min, and RR by 71.50%, 0.19%, and 0.93%, respectively, for Cybershake, and by 32.40%, 69.09%, and 

62.51%, respectively, for Epigenomics. Regarding cost, EPSO reduces it by 10.88%, 41.99%, and 41.88%, respec-

tively, for Cybershake, but for Epigenomics, PSO outperforms EPSO by 0.58%, while EPSO still outperforms 

Max-Min and RR, reducing cost by 21.38% and 15.80%, respectively. 

For the execution of 300 tasks, the proposed EPSO outperforms PSO, Max-Min, and RR in reducing Makespan 

by 0.63%, 8.45%, and 8.73%, respectively, for Cybershake, and by 36.26%, 31.57%, and 20.70%, respectively, for 

Epigenomics. In terms of energy consumption, although PSO surpasses EPSO by 0.41% for Cybershake, EPSO 

outperforms Max-Min and RR by 7.20% and 6.14%, respectively. For Epigenomics, EPSO excels in reducing 

energy consumption, outperforming PSO, Max-Min, and RR by 43.49%, 39.91%, and 8.10%, respectively. Re-

garding cost, EPSO reduces it by 31.20%, 47.24%, and 49.33%, respectively, for Cybershake, and by 3.07%, 

20.05%, and 21.02%, respectively, for Epigenomics compared to PSO, Max-Min, and RR. 

Finally, for the execution of 500 tasks, the proposed EPSO outperforms PSO, Max-Min, and RR in reducing 

Makespan by 1.76%, 10.71%, and 10.86%, respectively, for Cybershake, and by 29%, 37.06%, and 29.28%, re-

spectively, for Epigenomics. In terms of energy consumption, EPSO surpasses PSO, Max-Min, and RR by 0.19%, 

10.05%, and 7.60%, respectively, for Cybershake. For Epigenomics, EPSO excels in reducing energy consump-

tion, outperforming PSO, Max-Min, and RR by 33.36%, 33.46%, and 20.38%, respectively. Regarding cost, EPSO 

reduces it by 36.94%, 58.39%, and 60.71%, respectively, for Cybershake, and by 1.49%, 28.45%, and 24.25%, re-

spectively, for Epigenomics compared to PSO, Max-Min, and RR.  

Table 3. Algorithms performance for cybershake and epigenomics workflows. 

Performance 

Metrics 

Workflow Cybershake Epigenomics 

Algorithm EPSO PSO Max-

Min 

RR EPSO PSO Max-M

in 

RR 

 

Makespan 

(sec) 

100 Tasks 103314 103904 103903 103902 44417 67583 94963 75567 

300 Tasks 99668 100303 108862 109201 23734 37235 34682 29929 

500 Tasks 99731 101522 111699 111886 113677 160111 180609 160736 

 

Energy con-

sumption (J) 

100 Tasks 5211 18287 5221 5260 4701 6954 15208 12540 

300 Tasks 5185 5164 5587 5524 3699 6595 6156 4025 

500 Tasks 5280 5290 5870 5714 17251 25886 25924 21668 

 

Cost ($) 

100 Tasks 455138 510703 784527 783124 270056 268479 343512 320723 

300 Tasks 143190 208129 271404 282608 155964 160898 195078 197453 

500 Tasks 121352 192453 291630 308851 921779 935722 1288316 1216840 

 

Table 3 demonstrates that the EPSO algorithm consistently outperforms other algorithms in reducing the total 

completion time (makespan) for both workflows, even as the tasks increase. Amongst the algorithms tested on 

the Cybershake workflow, EPSO consistently outperformed the others, particularly in terms of metrics related 

to increasing task numbers. While all algorithms achieved similar results for makespan (total completion time), 

EPSO demonstrably reduced energy consumption for scenarios with 100, 300, and 500 tasks. Furthermore, 

EPSO emerged as the most cost-effective option as the number of tasks increased.EPSO remains impressive for 

Epigenomics workflows. It consistently reduces completion time (makespan) compared to other algorithms for 
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all task sizes (100, 300, and 500). EPSO also dominates in saving energy, especially as tasks increase. There's one 

exception: for total cost with only 100 tasks, PSO seems to perform slightly better as shown in Table 3. 

5. Conclusions 

This study proposes a novel approach called Modified Particle Swarm Optimization (EPSO), specifically de-

signed for managing tasks and scheduling scientific workflows within a complex environment that combines 

IoT devices, cloud computing, and fog computing. The core reason for developing EPSO lies in overcoming a 

frequent issue with the traditional PSO technique: its tendency to converge on solutions too quickly. PSO's 

simplicity and ease of use have made it a popular choice for scientific workflow scheduling; however, this study 

emphasizes the importance of handling delay-sensitive applications where timing and latency are crucial as-

pects for proper function. The innovation of EPSO lies in its ability to adjust the inertia weight throughout the 

process. This allows EPSO to dynamically adapt its behavior, striking a better balance between exploring a 

wider range of solutions (exploration) and focusing on promising areas (exploitation). This dynamic approach 

has the potential to improve both the speed at which EPSO converges on a solution and the overall quality of 

the solution itself. EPSO surpasses all other methods in minimizing makespan across all tested workflows. 

Additionally, EPSO demonstrates competitive performance in other metrics such as energy consumption and 

cost. 

 In the future, our research aims to further refine EPSO and explore the application of a wider range of algo-

rithms for tackling task offloading and scheduling challenges. We plan to utilize a weighted sum objective 

function, which will allow for a more nuanced analysis of trade-offs between different factors. Additionally, to 

enhance the practicality of EPSO in real-world scenarios, we intend to incorporate constraints such as budget 

limitations, deadlines, and resource limitations. 
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