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Abstract 

   Hand spasticity poses a significant challenge for stroke survivors, impacting hand func-

tionality and hindering daily activities . 

 The study introduces a smart rehabilitation system engineered for post-stroke hand spas-

ticity. Comprising four units includes biometric measurement gloves, rehabilitation gloves, 

a camera, a telecom unit, and a computer unit. Biometric measurement gloves with sensors 

measure patient features. Data inputs include biometric measurements and cam-

era-captured images. Computer programs consist of a clinical biometric program and a 

CNN program, specifically ResNet50 architecture. The telecom unit facilitates communica-

tion between the computer unit and rehabilittion gloves, doctor section, and patient section.     

The smart rehabilitation system offers advantages such as user-friendly operation, 

cost-effectiveness, elimination of physical visits to rehabilitation centers, and exceptional 

accuracy with a 99% validation accuracy rate and 0.0053 validation loss in the CNN frame-

work. The clinical biometric program is used to analyze programs with high accuracy. This 

study presents an innovative rehabilitation system. It includes biometric measurement 

gloves for patient assessment and rehabilitation gloves for hand exercises. Two programs, a 

clinical biometric program, and an intelligent CNN-based program, diagnose and therapies 

based on biometric data and image analysis.  The mobile application communicates be-

tween the system, patients, and healthcare providers. 

 

Keywords: Spasticity, Dynamic splint, soft gloves, CNN, a smart rehabilitation system. 

1. Introduction 

Worldwide, the incidence of stroke has increased resulting in disability and death [1]. Affection of Hand func-

tion and activities of daily living (ADL) and independence occurs in many stroke patients [2,3]. 

Stroke or cerebrovascular disease (CVA) is characterized by interruption of the cerebral circulation at any part 

by occlusion or rupture of blood vessels [4]. CVA is the main cause of disabilities affecting mid to late adulthood 

worldwide [4–6]. Post-stroke, the spasticity of upper limbs or lower limbs develops depending on the affected area 

of cerebral circulation [7, 8]. Spasticity frequently affects the upper limbs as the middle cerebral artery is the most 

affected artery by stroke [9, 10]. Spasticity resulting from hyperexcitability of the stretch reflex is characterized by 
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an increase in tonic stretch reflexes and muscle tone with exaggerated tendon jerks [11]. Spasticity of the upper 

limb in stroke patients poses functional challenges in doing activities of daily living [10].  

If spasticity is not treated muscle weakness, muscle atrophy as well as poor hand functional skills occur in the 

affected upper limb [10]. Hand spasticity is called ‘flexor synergy’ which is characterized by flexion at the elbow, 

wrist, and finger joints combined with internal rotation and adduction of the shoulder [12, 13]. This causes une-

qual forces between the agonist and antagonist muscles of the upper limbs resulting in the static joint position and 

dynamic limb movements [12]. Neglecting to treat upper limb spasticity results in contractures due to abnormal 

shortening of the soft tissue structures surrounding the joints such as joint capsules, ligaments; tendons; muscles, 

and the skin [14]. mobilization and spasticity resulting in musculoskeletal tightness which decreases the functional 

recovery of the hand [15]. When left in the immobilized state with the flexor synergy; the condition of the upper 

limbs progresses to a fibrotic state which triggers the development of early contractures [15]. Pain: fibrosis, con-

tracture, movement disorders, and muscle weakness usually accompanied by spasticity. 

One of the rehabilitation treatments in stroke patients is using dynamic splints to reduce spasticity of the Hand 

and maintain muscle tissue length [16], It increases joint range of motion by providing a low-load prolonged timed 

tissue stretch. Dynamic splints can improve hand function by maintaining the peripheral muscle and joint struc-

tures at a functional length [15]. Hand mobility should be facilitated by using dynamic splints which stretch the 

muscles; tendons and ligaments to maintain their length, so reducing spasticity [14]. Spasticity and impaired hand 

motor skills can be treated by harnessing the plasticity property of the brain through mass movement and 

task-oriented arm training [14]. Hand splints can be used to train motor learning and improve neural plasticity in 

the brain [15]. Using a soft robotic glove as an assistive device was studied before [17–21].  Different wearable 

hand robots have been developed recently to assist hand function. Soft robotic gloves, exoskeletons lightweight, 

and low-cost were developed for hand rehabilitation after stroke [22, 23]. 

In recent years, there has been a growing interest in developing innovative technologies to revolutionize stroke 

rehabilitation. Among these advancements, the integration of wearable devices and artificial intelligence (AI) tech-

niques has shown promise in creating personalized and effective rehabilitation strategies.[24–31]Specifically, the 

utilization of dynamic glove-based rehabilitation systems empowered by Convolutional Neural Networks (CNNs) 

presents a novel approach to address the challenges associated with spastic hands post-stroke. 

The integration of CNN technology into the rehabilitation system enables continuous learning and adaptation. 

By analyzing patterns in hand movements and muscle responses, the CNN algorithm can dynamically adjust the 

rehabilitation regimen, optimizing the therapy's effectiveness over time. Moreover, the system's user-friendly in-

terface and interactive feedback mechanisms engage stroke survivors actively in their rehabilitation journey, pro-

moting motivation and adherence to the prescribed exercises.[32–34] 

2. Methodology: 

  The smart rehabilitation system consists of biometric measurement gloves, rehabilitation gloves, a camera, a 

telecom unit, and a computer unit. Figure 1 shows the block diagram of the smart rehabilitation system.
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Figure 1: The block diagram of the smart rehabilitation system. 

2.1. Biometric measurement gloves 

Biometric measurement gloves consist of biometric sensors, conditional circuits, and Arduino Mega. 

2.1.1. biometric sensors 

  Force-sensitive resistor (FSR) sensors and Flexible (Flex) sensors are two types of sensors in which the sys-

tem is used to measure biometric measurements. 

   An electrical signal is produced by an FSR, a transducer that transforms mechanical forces like weight, 

pressure, and compression. The resistance of the sensor reduces with increasing force applied to it. The output re-

sistance decreases as pressure increases. 

Flex sensors or bend sensors are sensors whose resistance varies with the degree of bend or flexing movements 

they experience. They translate the change in bend into electrical resistance, the greater the bend, the higher the 

resistance value. There are five flex sensors and five FSR sensors used for each glove. 

2.1.2. Conditional circuits 

 The FSR and Flex sensor outputs are resistance measurements corresponding to biometric measurements. 

They must be transformed into voltage signal outputs that will be used with Arduino inputs. To convert resistance 

output to voltage output, a voltage potential divider is used [35]. potential divider converts the change in re-

sistance into a change in voltage. Figure 2 shows the potential divider circuit and Equation 1 calculates the voltage 

output. 



IJT’2024, Vol.04, Issue 01                                                                                                     4 of 18 

 

Figure 2: Potential divider circuit. 

𝑉𝑜𝑢𝑡 =
𝑅2

𝑅1+𝑅2
𝑉𝑖𝑛    =  

𝑅2

𝑅1+𝑅2
5 𝑉  …………………(1) 

 

Figure 3 (a,b) shows the conditional circuits of the FSR and Flex sensors respectively. 

 

Figure 3: (a): The circuits of the FSR sensor, and (b): The circuits of the Flex sensor. 

2.1.3. Arduino 

    After conditional circuits, the output voltage is the input to Arduino which converts it to digital voltage 

[36]. Analog readings are transformed to digital values between 0 and 1023 using Arduino's 10-bit analog-to-digital 

converter, which corresponds to the output range[37]. 
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2.2. Computer unit: 

   This is the most important stage which is capable of receiving the data,  analyzing it, and making a suita-

ble decision. 

2.2.1.  Data inputs 

     This stage can accept two types of data which came from biometric measurements from sensors and a 

camera sensor. Biometric measurement gloves are measuring the features of the patients.  

Table 1 (a,b) shows the features measurement of healthy and patient samples. 

   The second data input comes from the camera sensor.  The SONY Cyber-shot DSC-W710 color digital 

camera was utilized for the experiments that were carried out for this system. The distance between the camera 

and the item was 0.4 m. Using the camera calibration approach, the camera was calibrated [38, 39]. The photos 

were recorded at a resolution of 2304 x 1728 pixels, however, they were downsized to 224 x 224 pixels. Figure 4 

shows four input images of healthy and patient persons which are taken by camera sensor.
 

Table 1: The features measurement of health and patients. 
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Figure 4: (a,b) Images of healthy hands, and (c,d) images of patient hands according to Institutional Review Board (IRB), Fac-

ulty of Medicine, Minia University, Egypt (protocol: 403/10/2023). 

 
 

2.3. Computer programs 

   There are two types of programs used in this stage; a clinical biometric program and a CNN program. 

2.3.1. Clinical biometric program  

   It is a simple and linear program that can analyze biometric data and make decisions. The clinical biometric 

program is divided into two branches.  The first one is a simple and designed to make decisions by using nested 

if conditions, and the second of them is designed to compute and analyses data using statistical analyses. Figure 5  

illustrates the flowchart of the clinical biometric program.  
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Figure 5: The flowchart of the clinical biometric program. 

 

2.3.2. Deep Learning Model 

        A CNN is used to classify and diagnose spastic hand illnesses and disabilities diseases using imaging. 

To train a network, it convolutionally combines four different imaging classes( healthy and three levels of hand 

disabilities) by using 400 images which can be obtained from IRB  of the Faculty of Medicine, Minia University, 

Egypt to introduce the idea of this research. The three categories of illnesses and disabilities of patients are demon-

strated according to their reading from biometric measurements.  

Figure 6 shows the three categories of illnesses and disabilities of patients according to biometric measure-

ments. 
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Figure 6: Three categories of disabilities according to biometric measurements. 

 

The feature extractors and the classifier make up the two main components of the architecture of the proposed 

CNN.  As the network expands, so does the CNN layer design. Each layer's number of retrieved features and the 

number of filters are associated. The following equation can be used to compute the feature map size [40]: 

Feature map size =1+(W-F+2P)/S         (2) 

Where: W, F, P, and S are input size, filter size, stride, and padding respectively. 

   The deep convolutional neural network employed in this system is called ResNet50. It is a deep convolu-

tional neural network with representative image auto-encoding and classification. The network in the classifier 

stage is built using a 50-layer residual network architecture, 5-fold cross-validation on four classification groups, 

224x224x3-pixel images, 30 epochs, 6 iterations per epoch, and an Adam optimizer with a learning rate of 0.01. The 

training and testing processes are sped up using Residual50, which also increases accuracy overall and lowers er-

ror rates.  

 

2.4. The ResNet50 architecture: 

The ResNet50 architecture comprises four primary components: convolutional layers, identity blocks, convolu-

tional blocks, and fully connected layers. These elements serve distinct functions within the network. The convolu-

tional layers extract features from the input image, while the identity and convolutional blocks handle the pro-

cessing and transformation of these features. Ultimately, the fully connected layers are employed to carry out the 

final classification process. 
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The ResNet50 model utilizes convolutional layers comprising multiple convolutional layers, accompanied by 

batch normalization and ReLU activation. These layers function to extract various features from the input image, 

including edges, textures, and shapes. Subsequently, max-pooling layers are employed after the convolutional lay-

ers, aiming to decrease the spatial dimensions of the feature maps while retaining the crucial features within them. 

The primary components forming ResNet50 are the identity block and convolutional block. The identity block 

functions as a basic unit by directing the input through multiple convolutional layers and then reinstating the in-

put to the resulting output. This mechanism enables the network to understand residual functions, aiding in map-

ping the input to the intended output. On the other hand, the convolutional block resembles the identity block but 

includes an extra 1x1 convolutional layer to decrease the number of filters before employing the 3x3 convolutional 

layer. 

The concluding segment of ResNet50 comprises the fully connected layers, which play a pivotal role in executing 

the ultimate classification. These specific layers are accountable for determining the final categorization. The ulti-

mate result of the last fully connected layer undergoes processing through a SoftMax activation function, ulti-

mately generating the probabilities associated with each class. According to the tutorial study illustrated in [41] 

and its summary we select resnet type. Moreover, the resnet50 has a simple architecture and reduces the time of 

training with a good performance compared with other types of resnent. Figure 7Figure 8   show the Residual50 

architecture, and building of Resnet 50 respectively. 

 

 

 
Figure 7: Residual50 architecture. 
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Figure 8: The architecture and building of ResNet 50, (a): ResNet layers architecture, and (b): ResNet building block. 

 

Skip connections, alternatively referred to as residual connections, represent a crucial component within the 

ResNet50 framework. Their purpose is to enable the network to grasp more complex architectures while circum-

venting the issue of gradients vanishing, ensuring effective learning in deeper layers. The issue of vanishing gra-

dients arises during the training of deep neural networks, wherein the gradients of parameters within the deeper 

layers diminish significantly, posing a challenge for these layers to effectively learn and enhance their performance. 

This difficulty escalates notably with the increased depth of the network. Skip connections resolve this issue by 

enabling direct information flow from the network's input to its output, circumventing certain layers. This capabil-

ity empowers the network to acquire residual functions, effectively guiding the transformation of input into the 

desired output, without the necessity of learning the complete mapping process from the ground up. 

ResNet50 incorporates skip connections within both the identity and convolutional blocks. In the identity 

block, the input undergoes convolutional layers and is subsequently merged with the output. Meanwhile, the 

convolutional block applies a 1x1 convolutional layer to diminish filter count before a 3x3 convolutional layer, then 

merges the input with the output. 

The integration of skip connections in ResNet50 permits the network to grasp intricate architectures without 

encountering challenges in effective training or the occurrence of vanishing gradients. This mechanism enables the 

model to learn deeper structures while maintaining training efficiency. 

2.5. Telecom unit 

   This unit is responsible for arriving at the health program decision from the computer unit to rehabilitation 

gloves, a doctor section, and a patient section as shown in Figure 1. Bluetooth HC-05 module is used for transpar-

ent wireless connection setup in this system. This module is interfaced with an Arduino controller. Figure 9 shows 

the circuit of interfacing between the module and the Arduino controller. 
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Figure 9: The interface between the Bluetooth module and Arduino. 

  The Telecom unit consists of mobile applications, the two sections, and a rehabilitation gloves,  unit which 

were mentioned before. The mobile application for this system was designed by using the RemoteXY program.  

    In the first section, a patient can get message data from a system or a doctor, and sorts of these data can be 

used in an application to carry out a rehabilitation program.  

   A doctor has the power to change the rehabilitation choice that was generated by the computer programs in 

the second section. 

   The computer system's chosen rehabilitation program is sent to the rehabilitation gloves via a mobile ap-

plication. The mobile application's home page and rehabilitation decision are depicted in Figure 10. 

 

Figure 10: The mobile application's home page and rehabilitation decision. 

2.6. Rehabilitation gloves 

   Rehabilitation gloves are responsible for actuating and helping the patient with hand exercises and thera-

pies. It consists of Arduino, 5 servo motors, and wire connections. According to the diagnosis class or level which 

is decided by the computer unit, the rehabilitation gloves execute the therapy program. Moreover, in the telecom 

unit, a doctor has the authority to change the number of roles in therapy programs, if the case patient needs it. 

There are three levels and roles of execution that are demonstrated in Figure 10.   
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2.7. Arduino 

  It is a microcontroller that is able to execute the therapy program. 

2.7.1. Servo motors 

   There are five servo motor types MG995 high-speed metal gear dual bpatientsrings used in this system. The 

motors are assistance devices that actuate patients with hand exercises.  

2.7.2. wire connections 

 Polylactic Acid (PLA) is a wire connection that is used to connect between servo motors and gloves. It is a bi-

odegradable, sustainable, and food-safe polymer made from organic sources so it was recommended to use in bi-

omedical devices. Figure 11 shows the rehabilitation glove components and the smart rehabilitation system units 

mentioned in Figure 11. 

 

Figure 11: The smart rehabilitation system. 

3. Results 

3.1. Studies on human subjects  

The Purdue Institutional Review Board (IRB), Faculty of Medicine, Minia University, Egypt (protocol-approval 

number: 403/10/2023) approved all experiments involving human subjects. 

The results regarding the clinical biometric program are shown in Table 2, Figure 12 illustrates the statistical 

graphs of biometric gloves. 
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Table 2: Statistical analysis of biometric hand measurements for patients and healthy persons. 
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Figure 12 Statistical graphs of biometric gloves.  

3.2. The results of the CNN program: 

ResNet50 demonstrated 177 layers with 23.5M total learnable and accuracy =    0.9901. The system's accuracy 

and loss training curves are shown in Figure 13. 
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Figure 13: The training curves of accuracy and loss training carves. 

3.3. Confusion matrix: 

   The confusion matrix is used to evaluate the system's performance. The confusion matrix parameters and 

evaluation metrics are illustrated in Figure 14,  

 

Table 3 shows the results of the training table according to the number of epochs. 

 

Figure 14: The confusion matrix. 
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Table 3:The results of training table according to the number of epochs. 

 

4. Conclusion 

This study introduces an innovative rehabilitation system tailored for diagnosing and addressing spastic hand 

conditions. The system incorporates two specialized glove types: biometric measurement gloves for patient feature 

assessment and rehabilitation gloves for facilitating hand exercises and therapies. The diagnostic process employs two 

programs: a clinical biometric program utilizing data from the biometric gloves, and an intelligent CNN-based pro-

gram designed to identify optimal rehabilitation therapies via camera-captured images. The system's diverse data in-

puts afford it a robust advantage, with the CNN achieving an impressive validation accuracy rate of 100 % and valida-

tion loss of 0.0053 after 180 iterations with about one hour time of processing using one GPU in classifying and rec-

ommending rehabilitation programs based on image analysis. 

Central to its functionality is a mobile application facilitating seamless communication between the system, pa-

tients, and healthcare providers. Notably, this smart rehabilitation system boasts several advantages, including us-

er-friendly operation without external assistance, cost-effectiveness, elimination of the need for physical visits to reha-

bilitation centers, and exceptional accuracy attributed to the utilization of AI within the CNN framework. 
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