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Abstract: A crucial area of research is traffic classification, particularly in light of the 

advancements in machine learning in software-defined networking. Software-defined networks, 

which divide the control and data planes, can be automated and controlled by machine learning. 

Because traditional procedures could not keep up with the expanding use of encryption, the use 

of techniques for this purpose has increased. In this study, 15 features (the quantity of packets 

communicated, the average transmission time, and the number of instantly transmitted packets) 

were used to build traffic flows on the SDN for several protocols, including WWW, DNS, FTP, 

ICMP, P2P, and VOIP. A real-time dataset was produced by gathering data based on the 

features that were generated over the SDN controller in the physical network. We use the 

dataset to test and train a variety of machine learning models, including Random Forest, K 

Nearest Neighbor, Support Vector Machine, Logistic Regression, Decision Tree, and Naive 

Bayes. With a 99.8% accuracy rate, Decision Tree emerged as the most successful model for the 

traffic classification challenge. In order to provide the best classification performance with the 

lowest cost flow features for traffic classification in SDN, this approach has been identified as 

machine learning. 

Keywords: Software Defined Network SDN ; Traffic Classification TC ; machine learning ML ;  

Decision Tree DT  

1. Introduction 

Network traffic classification has turned into a crucial problem for computer science because of the growth and 

diversification of internet data traffic. Utilizing traffic analysis, classification techniques are used to enhance 

network service quality, make better use of network resources., identify network assaults and abnormalities[1]. 

Networks are becoming more complex and dynamic, which has compelled network operators to devise 

efficient network management methods. Due to the massive amount of generated traffic, traffic classification 

has become a difficult task in order to distinguish between a variety of applications [2]. The network traffic 

classification is the foundation of network management, which can manage the corresponding network traffic 

differently, provide the basis for the subsequent network protocol design, provide the strategies for network 

attack detection and flow cleaning in network security [3]. In the network, predetermined rules are applied to 

categorize packets. Information about ports and  network packet headers are used as classification criteria.  

This method works incredibly well for popular apps, but it doesn't work well for apps that use changeable 

port numbers [4]. Software Defined Networking (SDN) decouples the network control logic from the data 

plane described in, which most likely breaks the vertical framework of the OSI model [5]. SDN is seen as a 

potential network paradigm because of its claims to significantly improve resource consumption, simplify 

network operation and preservation, and simplify network maintenance. But the level of sophistication in the 
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existing SDN control granularities of flows is insufficient. Unlike traditional network architecture, the SDN 

isolates the control plane from the data plane, allowing a centralized controller to directly program the 

network [6]. A high-performance server receives the control plane, and network management is handled by 

central controller software. Pack transmission is only the responsibility of the data plane on routers or switches 

that are OpenFlow compliant. Of all the protocols that can be used in SDN architecture, the OpenFlow 

Protocol (OFP) is the most efficient. Since the contents of the package are not used to determine categorization, 

they can be classified as encrypted data. The data required for SDN traffic classification is gathered by the ML 

techniques through the OFP, and the classification can be completed with a low computational cost [7]. Despite 

the many benefits of SDN, research is still needed to improve routing optimization, traffic classification, 

quality of service (QoS) maintenance, controller placement, minimize flow table entries, load balancing, 

identify failure causes, and maintain reliability while scaling [8]. Machine learning-based techniques leverage 

statistical features extracted from data for traffic classification. Consequently, certain features may impede the 

classification process in classification domains, and an increase in data dimensionality may lead to a decrease 

in the prediction capability of an algorithm as well as an increase in computational expenses (such as 

processing and storage) [9]. Therefore, we go over the most typical and well-liked techniques that have 

historically been employed in the literature for TC analysis. 

However, the existing distributed network architectures are unsuitable for collecting and processing a large-

scale data. The advent of the software-defined networking (SDN) enables the more efficient classification of 

network traffic. With the separation of the control plane and data plane, the control system is centralized and 

can be employed to significantly improve the collection and processing of large-scale data. In terms of network 

classification, the statistical flow information can be extracted more easily due to SDN controllers. In this 

paper, we propose a network traffic classification framework using the SDN architecture. We also apply six 

ensemble algorithms and analyze their classification performance in terms of the accuracy, precision, recall, F 

1-score, training time, and classification time. The data collected in each experiment were considered as 

training data, and test data were randomly collected to test the trained modules. Moreover, we showed how 

the selection features technique could affect the final results. The effects of feature selection and model 

adjustment on the performance of the classifier are examined. This study demonstrates that ML can attain high 

TC accuracy, making it appropriate for a range of SDN applications. The remainder of the document is 

structured as follows:  The related work is provided in Section 2. The developed framework's content, 

methodology, and processing steps are presented in Section 3. Furthermore, Section 4 provides the 

experimental data demonstrating the viability of the suggested pipeline. Section 5 concludes with the work 

that will be done in the future. 

2. Related Work 

This section displays related works which utilize machine and deep learning to classify SDN traffic. Various 

studies have been conducted in recent years by researchers to explain the network TC problem from various 

perspectives. Su et al. [10] presented a solution to the” fine-grained traffic classification problem” that takes 

into account how to gather data and understand how ML algorithms work. Their analysis showed that 

decision tree (DT) and random forest (RF) had scored an accuracy of 99%. Samaan et al. [11] provided a novel 

video traffic classification method that makes use of an innovative FSVM strategy that allows the weight 

coefficient C to be adjusted adaptively. Their suggested method had an accuracy rate of 98% on average. Awad 

et al. [12] provided various ML algorithms for detecting and classifying conflict flows in SDNs. Their 

algorithms included DT, SVM, the range of flows selected had been between 100000 flows which achieved an 

accuracy of 98%. Van et al. [13] provided an SDN-IoT traffic classification model. On the given dataset, they 

ran three machine learning algorithms: RF, K-Nearest Neighbors, and DT. The best performing algorithm was 

RF classifier which achieved an accuracy of 99% with six features. Aouedi et al. [14] presented data exploration 

and analysis to pick the most pertinent features for categorizing network traffic. From 87 features in their 

dataset, they developed a method to determine the top 15 by employing ML classifiers such (DT, RF, 
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AdaBoost, CatBoost, Light-GBM, and XGBoost). Their method achieved an accuracy of 89.09%. Machoke et al. 

[15] presented a variety of machine learning (ML) algorithms for locating and classifying conflict flows in the 

SDN model. Depending on the flow regulations priority, action, protocol, and IP source address, the type of 

conflict was discovered and classified. Their proposed algorithms achieve accuracy of 90%. Karmous et al. [16] 

presented TC methods using unique ML models on SDN architecture by applying five distinct ML models 

(kNN, SVM, DT, and NB). The highest accuracy between them was 99%. Khairi et al. [17] suggested 

integrating ML technologies with SDN architecture. Three distinct models were applied, NB, SVM, and nearest 

centroid were used. In all three models, the TC task accuracy is more than 99%. Gnanamonickam et al. [18] 

demonstrated an SDN-based traffic classification framework. For their investigation, 500 samples were taken 

from each of the following apps: Dropbox, BitTorrent, Facebook, Linkedin, Skype, Vimeo, YouTube, Vimeo, 

Web Browsing (HTTP), and Facebook. These traffic samples were classified using machine learning techniques 

such as random forests (RF), stochastic gradient boosting (SGB), and extreme gradient boosting (EGB). Their 

results were 95%. Dang et al. [19] proposed an SDN architecture that might use Deep Learning(DL) algorithms 

to classify traffic. DL methods, such as the Multi-Layer Long Short Term Memory (LSTM) model and a CNN 

and single-layer LSTM model combination, were employed in their study to classify datasets comprising 

BitTorrent, HTTP, Secure Shell (SSH), RDP, and Skype traffic. Their results were 96%. An unsupervised 

profiling approach was utilized in Mondal et al. [20] to investigate flow characteristics and connectivity 

patterns in a limited amount of time. To solve the TC problem, which they formulated as a graph co-clustering 

problem with topology and edge attributes, the authors used a hybrid flow clustering (HFC) model. The 

disadvantage of unsupervised learning is that it requires more time for the user to evaluate the results. After 

the classification, the user has to spend time interpreting and labeling the classifications. Karn et al. [21] 

created a deep learning model in the SDN controller using multilayer perceptron (MLP), convolutional neural 

network (CNN), and stacked auto-encoder (SAE). Seven applications could be classified using the model. The 

average accuracies for the three models were nearly identical, at 98%. El-serwy et al. [22] used ML to create a 

model for network traffic classification. The traffic was collected from an SDN/NFV environment that included 

an ONOS controller and a simple mininet topology with two hosts and one OpenVswitch (OVS). Although the 

results of different ML algorithms for two different network scenarios were compared, no pre-processing steps 

were applied to the data, and the class imbalance problem had a significant impact on the results. The TC task 

is modeled using a multitask learning problem in [23]. Predicted values include bandwidth demand and flow 

duration in addition to the classification class. They contrasted a sizable amount of datasets with unlabeled 

traffic classes to a sizable amount with labeled bandwidth and flow length datasets. This strategy aimed to 

profit from the expense of labeling data for supervised learning. This research establishes a ML-based 

approach for classifying traffic flows in SDN. The presented system provides network operators with a 

solution for classifying network traffic in order to improve network efficiency and service quality. In this 

study, the number of features was chosen in order to prevent complexity and demanding computations in the 

network application while maintaining compatibility with the implementation (SDN controller). Instead of 

using a predetermined number of network traffic classes, an optimal number of network traffic classes was 

once determined using a supervised learning algorithm, making this method a more tailored network TC 

solution for network operators. 

3. Proposed Methodology 

There were two portions to this suggested solution. The ML algorithm was constructed in one half, and the 

network experiment was set up in the other, with the goal of illuminating the concept through the execution of 

the created ML model on an SDN platform. A comparable dataset was chosen, prepared, and made suitable 

for machine learning models in the first stage. Once the dataset has been collected and labeled using 

supervised machine learning, it must be used for training various classification models. In the second phase, 

an SDN architecture had to be set up, and a network application with a trained machine learning model for 

real-time classification had to be developed and implemented. 
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3.1 Description of Datasets 

The dataset ’SDN-traffic” used in this paper was from kaggle [24]. It consists of 65 features, 3577296 instances, 

78 classes (DNS, FTP, ICMP, P2P, VOIP, WWW and so on) and is stored in a CSV file. This dataset was chosen 

because it is a real dataset with a sufficient amount of diversity and richness to be effective in identifying 

different traffic behaviors. However, to make computation easier. As a result, our sub-dataset consists of 6 

applications and 404,528 instances Table 1. Then, in order to use some traffic as unlabeled data, the target 

labeled from it was deleted. In this situation, The target label was detected from it. In this situation, 121,342 

instances were employed (30%) of unlabeled data and 283,186 instances (70%) of labeled data. 

Table 1. Class distribution of applications in dataset. 

Application                    Number of Flow 

WWW                 2441 

P2P                710 

ICMP                 409 

VOIP                 256 

FTP                 217 

DNS                 184 

3.2 Material and Methods 

Figure 1 illustrates the methodology employed in this work, which consists of two primary processing steps:  

 data preprocessing. 

 traffic classification. 

In this case, a variety of feature selection techniques have been applied, as indicated by the category. In the last 

step, accuracy, training, and classification time are used to evaluate the classification's performance. 

 

                   Figure 1: Structure of the experimental methodology 

i) Data preprocessing is a data mining approach that modifies the data to make it suitable for classification. It's 

an initial phase that can be completed with a range of approaches, such as data cleaning and feature selection. 

1.  Data cleaning: While certain ML models can only handle numerical values, it is imperative to convert or 

reassign numerical values when the dataset comprises a variety of features of different sorts. In this effort, 

the IP address have been transformed and time stamp provisional data into numerical numbers. 
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Additionally, Because the dataset has several features with values on different scales, it must be scaled. You 

can use Min-Max normalization to control feature scaling. Using this strategy, all features in our dataset are 

scaled between 0 and 1, with each feature's lowest value set to 0 and its maximum value set to1. Since the 

packet loss rate feature includes some missing values, as the analysis reveals, NaN values were substituted 

for the feature's median values in order to produce a justifiable distribution of all the features. 

2.  Feature Selection: One of the contributions of this work is determining the ideal number of features (F) to 

produce the best classification performance in an actual dataset. In order to choose the best feature, set for the 

offline run, features selection approaches have been used. One of the most important steps in machine 

learning (ML) is feature selection. These algorithms pick a subset of features that are relevant to the goal 

notion. Feature selection offers numerous advantages, including the ability to  

 improve learning algorithms' performance in terms of learning rate and generalization capacity by 

resolving the dimensionality issue. 

 reduce storage requirements. In reality, feature selection is a difficult process because it must increase 

learning capacity while decreasing the number of features, in addition to the initial dataset’s large 

size. 

ii) Traffic Classification: For network management and security, the increasing diversity and complexity of 

network traffic provide significant challenges. The process of recognizing and classifying network traffic flows 

is known as traffic classification, and it is essential for detecting abnormal activity, understanding network 

behavior, and optimizing resource allocation. This paper presents a comprehensive analysis of TC techniques 

and their applications in enhancing network management in Figure 2. 

 

 
 
                                                                              Figure 2: Traffic Classification 
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The models that were tested are briefly explained here: 

 The supervised learning algorithm Support Vector Machine (SVM) uses labeled data to train the 

model. Often called hyper planes, decision boundaries between labeled data are established by the SVM 

model. Places that are near these hyper-planes are considered extreme points. In order to maximize these 

decision limitations, the algorithm will set margins between hyper-planes. Several different kernels are used to 

optimize these decision borders. The most typically used kernels are sigmoid, polynomial, RBF, and linear. 

One dimensional or multidimensional real-world data is available. Sometimes, it is also possible to separate 

these data sets linearly. The linear kernel may work with datasets that are linearly separable. [25,26]. 

 Decision Tree is Another supervised learning method based on knowledge gleaned from measuring 

the entropy of the dataset. Every condition and choice in the dataset is displayed graphically. To identify the 

root node, the dataset's entropy with the greatest information gain will be employed. With the division of 

branches in this way, the tree will finally be finished. Every internal node serves as an attribute test, with the 

outcomes displayed in the branches. The leaf represents a class label. The decision tree can include both 

numerical and categorical data for problems with categorization. Furthermore, nonlinear correlations among 

features are endorsed [25,26]. 

  Random Forest is a supervised learning technique that can handle both classification and regression 

issues. This is a combination of different decision tree methods, and the more trees included, the more accurate 

the model is. It functions similarly to a decision tree that is based on information gained. Every decision tree in 

classification will categorize the same problem, and the final conclusion will be determined by taking into 

account the majority of the out- comes. This model’s ability to handle big datasets and handle missing values is 

by far its most significant advantage [25,26]. 

 Kth Nearest Neighbor (KNN) is an instance-based supervised learning method. The parameter k of the 

KNN model indicates how many neighbors need to be considered in order to categorize. After looking at the 

labels of those neighbors, the model will select the most common label. K should have an odd value in order to 

prevent inferences.  With a large training set, this robust model performs well and can deal with noisy data. 

But it has trouble with multidimensional datasets, which could lead to a decline in efficacy, accuracy, etc 

[25,26]. 

 Na¨ıve Bayes (NB) is a probabilistic ML classifier based on the Bayes theorem. The algorithm makes the 

assumption that each attribute is impartial and contributes equally to the classification prediction. It is 

common practice to utilize the Naive Bayes method for classification problems. This approach could result in a 

passably excellent performance for this work [25,26]. 

 Logistic Regression (LR) is a simple supervised ML classifier, logistic regression, maps predictions to 

event probabilities using a cost function that is a sigmoid function. Based on the value chosen for the 

threshold, the out- put of the function, which has a range of 0 to 1, is used to assign the observations to discrete 

classes [25,26]. 

These six supervised learning models were taken for the training and prediction process to determine 

the model that best generates predictions 

 4. Experimental Results 

The experimental procedure and assessment of our suggested solution were provided in this section. 

4.1 Performance and Evaluation Metrics 

Accuracy, F1 score, Recall, Precision, and Training time were the used performance metrics [27]. The 

calculation for accuracy is.  

         
     

           
                                                                                      (1) 
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The weighted average of correctly classified outcomes for the two outcomes is used to determine accuracy for 

multi-output classification tasks like ours. The F1 score of a test indicates how accurate it is. The results of the 

test are combined for precision and recall. A real positive or negative result is one for which the model 

accurately identified the positive or negative category, respectively. On the other hand, when the model 

predicts the positive or negative class in- accurately, it results in a false positive or negative.  To take into 

consideration label imbalance. the weighted F1 score was employed. Additionally, The training time is 

monitored. The training time is the length of time needed to run an algorithm on a certain fold of the dataset 

          
  

     
                                                                                       (4) 

       
  

     
                                                                                               (5) 

         
                  

                
                                                                            (6) 

 

here; TP, TN is the number of correctly classes cases, and FN, FP is the number of incorrectly classes. 

Generally, accuracy is a frequently used parameter to assess the performance and comparability of the model. 

However, because it is less sensitive to unbalanced data and enhances the performance of some classes, relying 

solely on it may be deceptive. Therefore, F1-score, Precision, and Recall measures were applied. Ultimately, all 

of the networks were trained using the GPU that Kaggle provided. TensorFlow was used to generate the ML 

models. This article uses scikit-learn library in python as the implementation language to performs model 

training. Jupyter Notebooks serve as the software environment. All tests are performed on a Dell OptiPlex 

7020 with an Intel R Core i5 3.5GHz processor and 8GB of RAM. The OS is Windows 10. 

4.2 Results and Discussion 

To solve classification problems, various classification algorithms are used. Each classification algorithm 

employs a distinct mathematical model. As a result, the obtained results vary. Only by experimenting with 

various classification models can it be determined which model is more successful. This study put the most 

popular classification algorithms to the test and compared their success rates. Using the Python module Scikit-

Learn, the performance of the classification methods was evaluated. This library supports multiple ML 

models. The KNN, RF, DT, NB, LR, and SVM classification algorithms that are commonly employed in 

classification problems were the main focus of this study. 

In the first experiment, the mentioned ML models were applied on the dataset without applying feature 

selection technique. Additionally, Table 2 obtains the results without feature selection The experimental 

results of the training history include the accuracy function evolution for training. The accuracy for best model 

for the classification task was DT is about 100%.  Figures 3, 4 represent the ROC curves and the confusion 

matrices.  The DT classification model outperformed other models in all criteria, despite the fact that RF and 

DT models also produced remarkable results, as seen in the table.  The KNN-trained method was the fastest 

when the model working periods were compared, whereas the NB estimation method was the slowest and 

performed badly in accuracy tests. 

In the second experiment, the mentioned ML models were applied on the dataset after performing feature 

selection technique. Table 3 shows the results with feature selection. From the table, although RF and DT 

models achieved outstanding results, the DT classification model outperformed the other models in general. 

Figure 5 displays the confusion matrices for various models. and Figure 6 demonstrates their respective ROC 

curves. When the working times of the models were compared, it was discovered that NB was the fastest 

trained method but achieved a bad accuracy whereas DT was the slowest estimation method but produced a 

high accuracy of 99.6%. Although the RF performed well, this training time was longer than the other models. 

Additionally, the proposed model was evaluated with different percentile in the features selection step. from 

table 4, it observed that the proposed model has been achieved an accuracy of 99% at 40% percentile. on the 

other hand, the proposed model has the least performance with an accuracy 91% at 10% percentile. 
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Finding pertinent features and selecting the appropriate algorithm is not sufficient; the algorithm’s hyper-

parameters need to be tuned to obtain the optimal configuration for the dataset. To achieve maximum 

effectiveness, hyper- parameter modifications were made to the models that were used, including (criterion = 

“entropy” or “gini”, class weights = “none” or “balanced”). The applied algorithms and hyper-parameter 

settings are displayed in Table 5,6,7,8. The effectiveness of decision tree and random forest as machine-

learning approaches for both data sets was shown by experimental findings. The accuracy difference between 

decision tree and random forest was very small, almost insignificant. The effectiveness of decision tree and 

random forest as machine-learning approaches for both data sets was shown by experimental findings. The 

accuracy difference between decision trees and random forests was very small, almost in- significant. The 

decision tree was substantially quicker at making predictions than the random forest. Based on the results of 

the two aforementioned data sets, the DT may be an appropriate method for solving real-time, fine-grained 

traffic classification `challenges. Table 9 represent comparative accuracy of the proposed model with other 

literature techniques. Figure 7,8 shows the ROC and CMs for the hyper-parameters (“entropy” ,“balanced”) of 

DT model, . Figure 9,10 shows the ROC and CMs for the hyper-parameters (“entropy” ,“none”) of DT model, . 

Figure 11,12 shows the ROC and CMs for the hyper-parameters (“gini”, “none”) of DT mode Figure 13,14 

shows the ROC and CMs for the hyper-parameters (“gini”, “balanced”) of DT model.  

The confusion matrices of best classifiers for data subsets are figs. 7,9,11,13 respectively. The confusion 

matrices of several best-performance classifier models show the respective statistics in terms of true positives, 

true negatives, and so on, for different traffic class data subsets. The matrices clearly reveal that the majority of 

predictions are accurate, and the trained models can be trusted. Three distinct performance indicators are 

utilized to study and evaluate their behavior and performance to one another. The measurements are F1-score, 

Recall, and Precision. 

The figure 8,10,12,14 representing the ROC. Receiver Operator Characteristic is a probability curve that is 

utilized for several classes. It is commonly used to compare the performance of ML algorithms on unbalanced 

datasets. The area under the ROC curve measures the classifier's performance. 
 

Table 2: Results of each algorithm without applying feature selection technique. 

 Results without feature selection  

Model Accuracy(%) F1-score Precision Recall Time(s) 

SVM 98.7 98 100 97 1.7 

RF 99.6 100 100 99 1.7 

DT 100 100 100 100 1.7 

NB 59 61 88 60 1.8 

KNN 98.1 98 99 97 1.6 

LR 98.82 98 100 97 1.7 

 

Table 3: Classification results of each algorithm after applying feature selection technique. 

 Results with feature selection   

Model Accuracy(%) F1-score Precision Recall Time(s) 

SVM 84.6 78 74 85 9.3 

RF 99.53 99 99 99 14.6 

DT 99.8 99.6 99.6 99.6 1.1 

NB 97.8 97 98 97 1.2 

KNN 99.1 99 99 99 1.7 

LR 84.59 78 74 85 7.2 

 

 

Table 4: Classification results of the proposed model at different percentile. 
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Table 5: Detailed results at different hyper-parameters of DT with criterion=entropy, class weights= none. 

    CLASS     

Hyper-parameters Metrics DNS FTP ICMP P2P VOIP WWW  

max_depth=1 

max_leaf_nodes=2 

criertion=entropy 

class_weights=none 

max_features=24 

PER 0.00 0.00 0.00 72 0.00 75  

REC 0.00 0.00 0.00 97 0.00 100  

F1_Score 0.00 0.00 0.00 83 0.00 86  

Accuracy   74.29 %     

max_depth=6 

max_leaf_nodes=7 

criertion=entropy 

class_weights=none 

max_features=24 

PER 100 100 100 100 100 100  

REC 100 100 100 100 100 100  

F1_Score 100 100 100 100 100 100  

Accuracy   100 %      

 

Table 6: Detailed results at different hyper-parameters of DT with criterion= gini , class weights= none. 

    CLASS    

Hyper-parameters Metrics DNS FTP ICMP P2P VOIP WWW 

max_depth=1 

max_leaf_nodes=2 

criertion=gini 

class_weights=none 

max_features=24 

max_depth=5 

max_leaf_nodes=6 

criertion=gini 

class_weights=none 

max_features=24 

PER 0.00 0.00 0.00 72 0.00 75 

REC 0.00 0.00 0.00 97 0.00 100 

F1_Score 0.00 0.00 0.00 83 0.00 86 

Accuracy   74.29 %    

PER 100 100 100 97 100 100 

REC 100 95 100 99 100 100 

F1_Score 100 1000 100 100 100 100 

Accuracy   99.53 %    

 

Table 7: Detailed results at different hyper-parameters of DT with criterion=entropy, class weights= balanced. 

    CLASS     

  Percentile Metrics DNS FTP ICMP P2P VOIP WWW  

      10%  

PER 0.00 100 90 73 95 97  

REC 0.00 98 93 96 100 94  

F1_Score 0.00 99 92 83 97 96  

Accuracy   91.23 %     

      30% 

PER 100 100 100 96 100 100  

REC 100 88 100 100 100 100  

F1_Score 100 94 100 98 100 100  

Accuracy        99.41%     

     50% 

PER 100 100 100 96 100 100  

REC 100 88 100 100 100 100  

F1_Score 100 94 100 98 100 100  

Accuracy   99.41 %     
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Table 8: Detailed results at different hyper-parameters of DT with criterion=gini, class weights= balanced. 

    CLASS     

Hyper-parameters Metrics DNS FTP ICMP P2P VOIP WWW  

max_depth=1 

max_leaf_nodes=2 

criertion=gini 

class_weights=balanced 

max_features=24 

PER 0.04 0.00 100 0.00 0.00 0.00  

REC 100 0.00 100 0.00 0.00 0.00  

F1_Score 0.08 0.00 100 0.00 0.00 0.00  

Accuracy   14.22 %     

max_depth=2 

max_leaf_nodes=3 

criertion=gini 

class_weights=balanced 

max_features=24 

PER 0.04 100 100 0.00 0.00 0.00  

REC 100 88 100 0.00 0.00 0.00  

F1_Score 0.08 94 100 0.00 0.00 0.00  

Accuracy   18.48 %     

max_depth=4 

max_leaf_nodes=5 

criertion=gini 

class_weights=balanced 

max_features=24 

PER 0.06 100 100 100 100 0.00  

REC 100 88 100 97 100 0.00  

F1_Score 0.11 94 100 99 100 0.00  

Accuracy      40.40 %     

max_depth=5 

max_leaf_nodes=6 

criertion=gini 

class_weights=balanced 

max_features=24 

PER 78 100 100 100 100 100  

REC 100 88 100 97 100 100  

F1_Score 87 94 100 99 100 100  

Accuracy   98.93 %     

max_depth=7 

max_leaf_nodes=8 

criertion=gini 

class_weights=balanced 

max_features=24 

PER 100 98 100 99 100 100  

REC 100 98 100 99 100 100  

F1_Score 100 98 100 99 100 100  

Accuracy   99.76%     

  

    CLASS     

Hyper-parameters Metrics DNS FTP ICMP P2P VOIP WWW  

max_depth=1 

max_leaf_nodes=2 

criertion=entropy 

class_weights=balanced 

max_features=24 

PER 0.00 0.00 54 0.00 0.08 0.00  

REC 0.00 0.00 100 0.00 100 0.00  

F1_Score 0.00 0.00 70 0.00 0.14 0.00  

Accuracy   16.71 %     

max_depth=6 

max_leaf_nodes=7 

criertion=entropy 

class_weights=balanced 

max_features=24 

PER 100 100 100 100 100 100  

REC 100 100 100 100 100 100  

F1_Score 100 100 100 100 100 100  

Accuracy   100 %     
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Figure 3: Confusion matrices without of the proposed model with different algorithms.  (a) SVM, (b)R F , (c)DT 

 (d) NB, (e) KNN, and (f) LR. 
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Figure 4: ROCs without of the proposed model with different algorithms (a) SVM, (b) R F , (c) DT 

(d) NB, (e) KNN, and (f) LR. 
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Figure 5: Confusion matrices with of the proposed model with different algorithms (a) SVM,(b) R F , (c) DT, 

(d) NB, (e) KNN, and (f) LR. 
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Figure 6: ROCs with of the proposed model with different algorithms (a) SVM,(b) R F , (c) DT, 

(d) NB, (e) KNN, and (f) LR. 
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Figure 7: Confusion matrices of the DT(entropy-balanced) (a) , (b) , (c) , (d) , (e) and (f) . 
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Figure 8: R O Cs of the DT(entropy-balanced) (a) , (b) , (c) , (d) , (e) and (f) . 
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Figure 9: Confusion matrices of the DT(entropy-None) (a) , (b) , (c) , (d) , (e) and (f) . 
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Figure 10: R O Cs of the DT(entropy-None) (a) , (b) , (c) , (d) , (e) and (f) . 
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Figure 11: Confusion matrices of the DT(gini-none) (a) , (b) , (c) , (d) , (e) and (f) . 
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Figure 12: R O Cs of the DT(gini-none) (a) , (b) , (c) , (d) , (e) and (f) . 
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Figure 13: Confusion matrices of the DT(gini-balanced) (a),(b),(c), 

 (d), (e), (f), (g)and(h) 
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Figure 14: ROCs of the DT(gini-balanced) (a),(b), (c),(d) , (e) ,(f) ,(g) and (h)  
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Table 9. Comparative accuracy of the proposed model with other literature techniques. 

Ref  MLTechnique Features Selection Model Output Accuracy 

Su et al. [10]  1D ,CNN,CNN-LSTM  11 flow features 6 applications 99% 

Samaan et al. [11] LR,RF,DT  9 flow features 8 applications 98% 

Awad et al. [12] MLMR framework 
automatic by 

algorithm 
8 applications 

98% 

Van et al. [13] KNN,SVM,RF,LR 10 flow features 6 applications 99% 

Aouedi et al. [14] KNN,SVM,RF,MLP,DT 
automatic by 

algorithm 
10 applications 

89% 

Machoke et al. [15] 
eXtreme Gradient Boosting 

RF,KNN 
11 flow features 8 applications 

90%  

Karmous et al. [16] KNN 
automatic by 

algorithm 
10 applications 

99% 

Khairi et al. [17] SVM,DT 7 flow features 8 applications 99.2% 

Gnanamonickam et al. 

[18] 
MLT 

automatic by 

algorithm 
8 applications 

95% 

Dang et al. [19] DT,RF 22 flow features 4 applications 96% 

proposed model 
k-NN, SVM, DT, RF, NP and 

LR 
15 flow features 6 applications 

99.8% 

 

5. Conclusions 

 In this paper, SDN traffic classification model was described. A dataset was subjected to 

classification using six ML algorithms: KNN, LR, RF, DT, NB and SVM Classifier. the performance 

was better with the feature selected DT classifier. It achieved a 99.6% accuracy rate and a 100% F1 

score. A number of issues must be resolved in order to move on with the task. First, only a 

straightforward topology was utilized to test the hypothesis, with the primary emphasis being placed 

on the correctness of the ML models. Although accuracy is required, the networks in the actual world are 

much more complicated, therefore accuracy is insufficient. A real-world network’s performance is also 

directly impacted by other variables including scalability, availability, and others. Additionally, When 

the number of attributes increases, the traffic patterns that the clustering algorithm found must be 

improved while keeping the level of complexity manageable. Due to the fact that user behavior 

patterns vary from network to network, this finding is also context-dependent. For instance, the quantity 

of clusters in a dataset derived from a data center and a dataset derived from a sensor network might 

differ. Our future work will examine more intricate models based on ensemble learning techniques, which 

combine multiple learning algorithms to produce better predictive performance than could be obtained from 

any one learning algorithm. This will broaden the corresponding ML studies and increase the accuracy of 

detection and prediction while also improving performance evaluation metrics. 
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