

IJT’2024, Vol.04, Issue 01 https://ijt.journals.ekb.eg

Traffic Classification in Software Defined Networks based on

Machine Learning Algorithms

Sherif Mahgoub 1, Mohamed Ashour 2 ,Mohamed Yakout 3 and Eman AbdElhalim4

 1 Electronics and Communications Engineering Department, Faculty of Engineering, Mansoura University;

sherifmahgoub2019@gmail.com. 2 Associate Professor at Faculty of Engineering, Mansoura University;

mohmoh@mans.edu.eg. 3 Associate Professor at Faculty of Engineering, Mansoura University;

myakout@mans.edu.eg. 4 Assistant Professor at Faculty of Engineering, Mansoura University;

eman_haleim@mans.edu.eg.

Abstract: A crucial area of research is traffic classification, particularly in light of the

advancements in machine learning in software-defined networking. Software-defined networks,

which divide the control and data planes, can be automated and controlled by machine learning.

Because traditional procedures could not keep up with the expanding use of encryption, the use

of techniques for this purpose has increased. In this study, 15 features (the quantity of packets

communicated, the average transmission time, and the number of instantly transmitted packets)

were used to build traffic flows on the SDN for several protocols, including WWW, DNS, FTP,

ICMP, P2P, and VOIP. A real-time dataset was produced by gathering data based on the

features that were generated over the SDN controller in the physical network. We use the

dataset to test and train a variety of machine learning models, including Random Forest, K

Nearest Neighbor, Support Vector Machine, Logistic Regression, Decision Tree, and Naive

Bayes. With a 99.8% accuracy rate, Decision Tree emerged as the most successful model for the

traffic classification challenge. In order to provide the best classification performance with the

lowest cost flow features for traffic classification in SDN, this approach has been identified as

machine learning.

Keywords: Software Defined Network SDN ; Traffic Classification TC ; machine learning ML ;

Decision Tree DT

1. Introduction

Network traffic classification has turned into a crucial problem for computer science because of the growth and

diversification of internet data traffic. Utilizing traffic analysis, classification techniques are used to enhance

network service quality, make better use of network resources., identify network assaults and abnormalities[1].

Networks are becoming more complex and dynamic, which has compelled network operators to devise

efficient network management methods. Due to the massive amount of generated traffic, traffic classification

has become a difficult task in order to distinguish between a variety of applications [2]. The network traffic

classification is the foundation of network management, which can manage the corresponding network traffic

differently, provide the basis for the subsequent network protocol design, provide the strategies for network

attack detection and flow cleaning in network security [3]. In the network, predetermined rules are applied to

categorize packets. Information about ports and network packet headers are used as classification criteria.

This method works incredibly well for popular apps, but it doesn't work well for apps that use changeable

port numbers [4]. Software Defined Networking (SDN) decouples the network control logic from the data

plane described in, which most likely breaks the vertical framework of the OSI model [5]. SDN is seen as a

potential network paradigm because of its claims to significantly improve resource consumption, simplify

network operation and preservation, and simplify network maintenance. But the level of sophistication in the

Citation: Mahgoub, S.; Ashour, M.;

Yakout, M.; AbdlElhalim, E.

 Inter. Jour. of Telecommunications,

IJT’2023, Vol. 04, Issue 01, pp. 01-19,

2024.

Editor-in-Chief: Youssef Fayed.

Received: 20/11/2023.

Accepted: 08/02/2024.

Published: 08/02/2024.

Publisher’s Note: The International

Journal of Telecommunications, IJT,

stays neutral regard-ing jurisdictional

claims in published maps and

institutional affiliations.

Copyright: © 2023 by the authors. Submitted

for possible open access publication under

the terms and conditions of the International

Journal of Telecommunications, Air Defense

College, ADC, (https://ijt.journals.ekb.eg/).

mailto:sherifmahgoub2019@gmail.com
mailto:mohmoh@mans.edu.eg
mailto:myakout@mans.edu.eg
https://ijt.journals.ekb.eg/

IJT’2024, Vol.04, Issue 01 2 of 19

IJT’2024, Vol.04, Issue 01 https://ijt.journals.ekb.eg

existing SDN control granularities of flows is insufficient. Unlike traditional network architecture, the SDN

isolates the control plane from the data plane, allowing a centralized controller to directly program the

network [6]. A high-performance server receives the control plane, and network management is handled by

central controller software. Pack transmission is only the responsibility of the data plane on routers or switches

that are OpenFlow compliant. Of all the protocols that can be used in SDN architecture, the OpenFlow

Protocol (OFP) is the most efficient. Since the contents of the package are not used to determine categorization,

they can be classified as encrypted data. The data required for SDN traffic classification is gathered by the ML

techniques through the OFP, and the classification can be completed with a low computational cost [7]. Despite

the many benefits of SDN, research is still needed to improve routing optimization, traffic classification,

quality of service (QoS) maintenance, controller placement, minimize flow table entries, load balancing,

identify failure causes, and maintain reliability while scaling [8]. Machine learning-based techniques leverage

statistical features extracted from data for traffic classification. Consequently, certain features may impede the

classification process in classification domains, and an increase in data dimensionality may lead to a decrease

in the prediction capability of an algorithm as well as an increase in computational expenses (such as

processing and storage) [9]. Therefore, we go over the most typical and well-liked techniques that have

historically been employed in the literature for TC analysis.

However, the existing distributed network architectures are unsuitable for collecting and processing a large-

scale data. The advent of the software-defined networking (SDN) enables the more efficient classification of

network traffic. With the separation of the control plane and data plane, the control system is centralized and

can be employed to significantly improve the collection and processing of large-scale data. In terms of network

classification, the statistical flow information can be extracted more easily due to SDN controllers. In this

paper, we propose a network traffic classification framework using the SDN architecture. We also apply six

ensemble algorithms and analyze their classification performance in terms of the accuracy, precision, recall, F

1-score, training time, and classification time. The data collected in each experiment were considered as

training data, and test data were randomly collected to test the trained modules. Moreover, we showed how

the selection features technique could affect the final results. The effects of feature selection and model

adjustment on the performance of the classifier are examined. This study demonstrates that ML can attain high

TC accuracy, making it appropriate for a range of SDN applications. The remainder of the document is

structured as follows: The related work is provided in Section 2. The developed framework's content,

methodology, and processing steps are presented in Section 3. Furthermore, Section 4 provides the

experimental data demonstrating the viability of the suggested pipeline. Section 5 concludes with the work

that will be done in the future.

2. Related Work

This section displays related works which utilize machine and deep learning to classify SDN traffic. Various

studies have been conducted in recent years by researchers to explain the network TC problem from various

perspectives. Su et al. [10] presented a solution to the” fine-grained traffic classification problem” that takes

into account how to gather data and understand how ML algorithms work. Their analysis showed that

decision tree (DT) and random forest (RF) had scored an accuracy of 99%. Samaan et al. [11] provided a novel

video traffic classification method that makes use of an innovative FSVM strategy that allows the weight

coefficient C to be adjusted adaptively. Their suggested method had an accuracy rate of 98% on average. Awad

et al. [12] provided various ML algorithms for detecting and classifying conflict flows in SDNs. Their

algorithms included DT, SVM, the range of flows selected had been between 100000 flows which achieved an

accuracy of 98%. Van et al. [13] provided an SDN-IoT traffic classification model. On the given dataset, they

ran three machine learning algorithms: RF, K-Nearest Neighbors, and DT. The best performing algorithm was

RF classifier which achieved an accuracy of 99% with six features. Aouedi et al. [14] presented data exploration

and analysis to pick the most pertinent features for categorizing network traffic. From 87 features in their

dataset, they developed a method to determine the top 15 by employing ML classifiers such (DT, RF,

IJT’2024, Vol.04, Issue 01 3 of 19

IJT’2024, Vol.04, Issue 01 https://ijt.journals.ekb.eg

AdaBoost, CatBoost, Light-GBM, and XGBoost). Their method achieved an accuracy of 89.09%. Machoke et al.

[15] presented a variety of machine learning (ML) algorithms for locating and classifying conflict flows in the

SDN model. Depending on the flow regulations priority, action, protocol, and IP source address, the type of

conflict was discovered and classified. Their proposed algorithms achieve accuracy of 90%. Karmous et al. [16]

presented TC methods using unique ML models on SDN architecture by applying five distinct ML models

(kNN, SVM, DT, and NB). The highest accuracy between them was 99%. Khairi et al. [17] suggested

integrating ML technologies with SDN architecture. Three distinct models were applied, NB, SVM, and nearest

centroid were used. In all three models, the TC task accuracy is more than 99%. Gnanamonickam et al. [18]

demonstrated an SDN-based traffic classification framework. For their investigation, 500 samples were taken

from each of the following apps: Dropbox, BitTorrent, Facebook, Linkedin, Skype, Vimeo, YouTube, Vimeo,

Web Browsing (HTTP), and Facebook. These traffic samples were classified using machine learning techniques

such as random forests (RF), stochastic gradient boosting (SGB), and extreme gradient boosting (EGB). Their

results were 95%. Dang et al. [19] proposed an SDN architecture that might use Deep Learning(DL) algorithms

to classify traffic. DL methods, such as the Multi-Layer Long Short Term Memory (LSTM) model and a CNN

and single-layer LSTM model combination, were employed in their study to classify datasets comprising

BitTorrent, HTTP, Secure Shell (SSH), RDP, and Skype traffic. Their results were 96%. An unsupervised

profiling approach was utilized in Mondal et al. [20] to investigate flow characteristics and connectivity

patterns in a limited amount of time. To solve the TC problem, which they formulated as a graph co-clustering

problem with topology and edge attributes, the authors used a hybrid flow clustering (HFC) model. The

disadvantage of unsupervised learning is that it requires more time for the user to evaluate the results. After

the classification, the user has to spend time interpreting and labeling the classifications. Karn et al. [21]

created a deep learning model in the SDN controller using multilayer perceptron (MLP), convolutional neural

network (CNN), and stacked auto-encoder (SAE). Seven applications could be classified using the model. The

average accuracies for the three models were nearly identical, at 98%. El-serwy et al. [22] used ML to create a

model for network traffic classification. The traffic was collected from an SDN/NFV environment that included

an ONOS controller and a simple mininet topology with two hosts and one OpenVswitch (OVS). Although the

results of different ML algorithms for two different network scenarios were compared, no pre-processing steps

were applied to the data, and the class imbalance problem had a significant impact on the results. The TC task

is modeled using a multitask learning problem in [23]. Predicted values include bandwidth demand and flow

duration in addition to the classification class. They contrasted a sizable amount of datasets with unlabeled

traffic classes to a sizable amount with labeled bandwidth and flow length datasets. This strategy aimed to

profit from the expense of labeling data for supervised learning. This research establishes a ML-based

approach for classifying traffic flows in SDN. The presented system provides network operators with a

solution for classifying network traffic in order to improve network efficiency and service quality. In this

study, the number of features was chosen in order to prevent complexity and demanding computations in the

network application while maintaining compatibility with the implementation (SDN controller). Instead of

using a predetermined number of network traffic classes, an optimal number of network traffic classes was

once determined using a supervised learning algorithm, making this method a more tailored network TC

solution for network operators.

3. Proposed Methodology

There were two portions to this suggested solution. The ML algorithm was constructed in one half, and the

network experiment was set up in the other, with the goal of illuminating the concept through the execution of

the created ML model on an SDN platform. A comparable dataset was chosen, prepared, and made suitable

for machine learning models in the first stage. Once the dataset has been collected and labeled using

supervised machine learning, it must be used for training various classification models. In the second phase,

an SDN architecture had to be set up, and a network application with a trained machine learning model for

real-time classification had to be developed and implemented.

IJT’2024, Vol.04, Issue 01 4 of 19

IJT’2024, Vol.04, Issue 01 https://ijt.journals.ekb.eg

3.1 Description of Datasets

The dataset ’SDN-traffic” used in this paper was from kaggle [24]. It consists of 65 features, 3577296 instances,

78 classes (DNS, FTP, ICMP, P2P, VOIP, WWW and so on) and is stored in a CSV file. This dataset was chosen

because it is a real dataset with a sufficient amount of diversity and richness to be effective in identifying

different traffic behaviors. However, to make computation easier. As a result, our sub-dataset consists of 6

applications and 404,528 instances Table 1. Then, in order to use some traffic as unlabeled data, the target

labeled from it was deleted. In this situation, The target label was detected from it. In this situation, 121,342

instances were employed (30%) of unlabeled data and 283,186 instances (70%) of labeled data.

Table 1. Class distribution of applications in dataset.

Application Number of Flow

WWW 2441

P2P 710

ICMP 409

VOIP 256

FTP 217

DNS 184

3.2 Material and Methods

Figure 1 illustrates the methodology employed in this work, which consists of two primary processing steps:

 data preprocessing.

 traffic classification.

In this case, a variety of feature selection techniques have been applied, as indicated by the category. In the last

step, accuracy, training, and classification time are used to evaluate the classification's performance.

 Figure 1: Structure of the experimental methodology

i) Data preprocessing is a data mining approach that modifies the data to make it suitable for classification. It's

an initial phase that can be completed with a range of approaches, such as data cleaning and feature selection.

1. Data cleaning: While certain ML models can only handle numerical values, it is imperative to convert or

reassign numerical values when the dataset comprises a variety of features of different sorts. In this effort,

the IP address have been transformed and time stamp provisional data into numerical numbers.

IJT’2024, Vol.04, Issue 01 5 of 19

IJT’2024, Vol.04, Issue 01 https://ijt.journals.ekb.eg

Additionally, Because the dataset has several features with values on different scales, it must be scaled. You

can use Min-Max normalization to control feature scaling. Using this strategy, all features in our dataset are

scaled between 0 and 1, with each feature's lowest value set to 0 and its maximum value set to1. Since the

packet loss rate feature includes some missing values, as the analysis reveals, NaN values were substituted

for the feature's median values in order to produce a justifiable distribution of all the features.

2. Feature Selection: One of the contributions of this work is determining the ideal number of features (F) to

produce the best classification performance in an actual dataset. In order to choose the best feature, set for the

offline run, features selection approaches have been used. One of the most important steps in machine

learning (ML) is feature selection. These algorithms pick a subset of features that are relevant to the goal

notion. Feature selection offers numerous advantages, including the ability to

 improve learning algorithms' performance in terms of learning rate and generalization capacity by

resolving the dimensionality issue.

 reduce storage requirements. In reality, feature selection is a difficult process because it must increase

learning capacity while decreasing the number of features, in addition to the initial dataset’s large

size.

ii) Traffic Classification: For network management and security, the increasing diversity and complexity of

network traffic provide significant challenges. The process of recognizing and classifying network traffic flows

is known as traffic classification, and it is essential for detecting abnormal activity, understanding network

behavior, and optimizing resource allocation. This paper presents a comprehensive analysis of TC techniques

and their applications in enhancing network management in Figure 2.

 Figure 2: Traffic Classification

IJT’2024, Vol.04, Issue 01 6 of 19

IJT’2024, Vol.04, Issue 01 https://ijt.journals.ekb.eg

The models that were tested are briefly explained here:

 The supervised learning algorithm Support Vector Machine (SVM) uses labeled data to train the

model. Often called hyper planes, decision boundaries between labeled data are established by the SVM

model. Places that are near these hyper-planes are considered extreme points. In order to maximize these

decision limitations, the algorithm will set margins between hyper-planes. Several different kernels are used to

optimize these decision borders. The most typically used kernels are sigmoid, polynomial, RBF, and linear.

One dimensional or multidimensional real-world data is available. Sometimes, it is also possible to separate

these data sets linearly. The linear kernel may work with datasets that are linearly separable. [25,26].

 Decision Tree is Another supervised learning method based on knowledge gleaned from measuring

the entropy of the dataset. Every condition and choice in the dataset is displayed graphically. To identify the

root node, the dataset's entropy with the greatest information gain will be employed. With the division of

branches in this way, the tree will finally be finished. Every internal node serves as an attribute test, with the

outcomes displayed in the branches. The leaf represents a class label. The decision tree can include both

numerical and categorical data for problems with categorization. Furthermore, nonlinear correlations among

features are endorsed [25,26].

 Random Forest is a supervised learning technique that can handle both classification and regression

issues. This is a combination of different decision tree methods, and the more trees included, the more accurate

the model is. It functions similarly to a decision tree that is based on information gained. Every decision tree in

classification will categorize the same problem, and the final conclusion will be determined by taking into

account the majority of the out- comes. This model’s ability to handle big datasets and handle missing values is

by far its most significant advantage [25,26].

 Kth Nearest Neighbor (KNN) is an instance-based supervised learning method. The parameter k of the

KNN model indicates how many neighbors need to be considered in order to categorize. After looking at the

labels of those neighbors, the model will select the most common label. K should have an odd value in order to

prevent inferences. With a large training set, this robust model performs well and can deal with noisy data.

But it has trouble with multidimensional datasets, which could lead to a decline in efficacy, accuracy, etc

[25,26].

 Na¨ıve Bayes (NB) is a probabilistic ML classifier based on the Bayes theorem. The algorithm makes the

assumption that each attribute is impartial and contributes equally to the classification prediction. It is

common practice to utilize the Naive Bayes method for classification problems. This approach could result in a

passably excellent performance for this work [25,26].

 Logistic Regression (LR) is a simple supervised ML classifier, logistic regression, maps predictions to

event probabilities using a cost function that is a sigmoid function. Based on the value chosen for the

threshold, the out- put of the function, which has a range of 0 to 1, is used to assign the observations to discrete

classes [25,26].

These six supervised learning models were taken for the training and prediction process to determine

the model that best generates predictions

 4. Experimental Results

The experimental procedure and assessment of our suggested solution were provided in this section.

4.1 Performance and Evaluation Metrics

Accuracy, F1 score, Recall, Precision, and Training time were the used performance metrics [27]. The

calculation for accuracy is.

 (1)

IJT’2024, Vol.04, Issue 01 7 of 19

IJT’2024, Vol.04, Issue 01 https://ijt.journals.ekb.eg

The weighted average of correctly classified outcomes for the two outcomes is used to determine accuracy for

multi-output classification tasks like ours. The F1 score of a test indicates how accurate it is. The results of the

test are combined for precision and recall. A real positive or negative result is one for which the model

accurately identified the positive or negative category, respectively. On the other hand, when the model

predicts the positive or negative class in- accurately, it results in a false positive or negative. To take into

consideration label imbalance. the weighted F1 score was employed. Additionally, The training time is

monitored. The training time is the length of time needed to run an algorithm on a certain fold of the dataset

 (4)

 (5)

 (6)

here; TP, TN is the number of correctly classes cases, and FN, FP is the number of incorrectly classes.

Generally, accuracy is a frequently used parameter to assess the performance and comparability of the model.

However, because it is less sensitive to unbalanced data and enhances the performance of some classes, relying

solely on it may be deceptive. Therefore, F1-score, Precision, and Recall measures were applied. Ultimately, all

of the networks were trained using the GPU that Kaggle provided. TensorFlow was used to generate the ML

models. This article uses scikit-learn library in python as the implementation language to performs model

training. Jupyter Notebooks serve as the software environment. All tests are performed on a Dell OptiPlex

7020 with an Intel R Core i5 3.5GHz processor and 8GB of RAM. The OS is Windows 10.

4.2 Results and Discussion

To solve classification problems, various classification algorithms are used. Each classification algorithm

employs a distinct mathematical model. As a result, the obtained results vary. Only by experimenting with

various classification models can it be determined which model is more successful. This study put the most

popular classification algorithms to the test and compared their success rates. Using the Python module Scikit-

Learn, the performance of the classification methods was evaluated. This library supports multiple ML

models. The KNN, RF, DT, NB, LR, and SVM classification algorithms that are commonly employed in

classification problems were the main focus of this study.

In the first experiment, the mentioned ML models were applied on the dataset without applying feature

selection technique. Additionally, Table 2 obtains the results without feature selection The experimental

results of the training history include the accuracy function evolution for training. The accuracy for best model

for the classification task was DT is about 100%. Figures 3, 4 represent the ROC curves and the confusion

matrices. The DT classification model outperformed other models in all criteria, despite the fact that RF and

DT models also produced remarkable results, as seen in the table. The KNN-trained method was the fastest

when the model working periods were compared, whereas the NB estimation method was the slowest and

performed badly in accuracy tests.

In the second experiment, the mentioned ML models were applied on the dataset after performing feature

selection technique. Table 3 shows the results with feature selection. From the table, although RF and DT

models achieved outstanding results, the DT classification model outperformed the other models in general.

Figure 5 displays the confusion matrices for various models. and Figure 6 demonstrates their respective ROC

curves. When the working times of the models were compared, it was discovered that NB was the fastest

trained method but achieved a bad accuracy whereas DT was the slowest estimation method but produced a

high accuracy of 99.6%. Although the RF performed well, this training time was longer than the other models.

Additionally, the proposed model was evaluated with different percentile in the features selection step. from

table 4, it observed that the proposed model has been achieved an accuracy of 99% at 40% percentile. on the

other hand, the proposed model has the least performance with an accuracy 91% at 10% percentile.

IJT’2024, Vol.04, Issue 01 8 of 19

IJT’2024, Vol.04, Issue 01 https://ijt.journals.ekb.eg

Finding pertinent features and selecting the appropriate algorithm is not sufficient; the algorithm’s hyper-

parameters need to be tuned to obtain the optimal configuration for the dataset. To achieve maximum

effectiveness, hyper- parameter modifications were made to the models that were used, including (criterion =

“entropy” or “gini”, class weights = “none” or “balanced”). The applied algorithms and hyper-parameter

settings are displayed in Table 5,6,7,8. The effectiveness of decision tree and random forest as machine-

learning approaches for both data sets was shown by experimental findings. The accuracy difference between

decision tree and random forest was very small, almost insignificant. The effectiveness of decision tree and

random forest as machine-learning approaches for both data sets was shown by experimental findings. The

accuracy difference between decision trees and random forests was very small, almost in- significant. The

decision tree was substantially quicker at making predictions than the random forest. Based on the results of

the two aforementioned data sets, the DT may be an appropriate method for solving real-time, fine-grained

traffic classification `challenges. Table 9 represent comparative accuracy of the proposed model with other

literature techniques. Figure 7,8 shows the ROC and CMs for the hyper-parameters (“entropy” ,“balanced”) of

DT model, . Figure 9,10 shows the ROC and CMs for the hyper-parameters (“entropy” ,“none”) of DT model, .

Figure 11,12 shows the ROC and CMs for the hyper-parameters (“gini”, “none”) of DT mode Figure 13,14

shows the ROC and CMs for the hyper-parameters (“gini”, “balanced”) of DT model.

The confusion matrices of best classifiers for data subsets are figs. 7,9,11,13 respectively. The confusion

matrices of several best-performance classifier models show the respective statistics in terms of true positives,

true negatives, and so on, for different traffic class data subsets. The matrices clearly reveal that the majority of

predictions are accurate, and the trained models can be trusted. Three distinct performance indicators are

utilized to study and evaluate their behavior and performance to one another. The measurements are F1-score,

Recall, and Precision.

The figure 8,10,12,14 representing the ROC. Receiver Operator Characteristic is a probability curve that is

utilized for several classes. It is commonly used to compare the performance of ML algorithms on unbalanced

datasets. The area under the ROC curve measures the classifier's performance.

Table 2: Results of each algorithm without applying feature selection technique.

 Results without feature selection

Model Accuracy(%) F1-score Precision Recall Time(s)

SVM 98.7 98 100 97 1.7

RF 99.6 100 100 99 1.7

DT 100 100 100 100 1.7

NB 59 61 88 60 1.8

KNN 98.1 98 99 97 1.6

LR 98.82 98 100 97 1.7

Table 3: Classification results of each algorithm after applying feature selection technique.

 Results with feature selection

Model Accuracy(%) F1-score Precision Recall Time(s)

SVM 84.6 78 74 85 9.3

RF 99.53 99 99 99 14.6

DT 99.8 99.6 99.6 99.6 1.1

NB 97.8 97 98 97 1.2

KNN 99.1 99 99 99 1.7

LR 84.59 78 74 85 7.2

Table 4: Classification results of the proposed model at different percentile.

IJT’2024, Vol.04, Issue 01 9 of 19

IJT’2024, Vol.04, Issue 01 https://ijt.journals.ekb.eg

Table 5: Detailed results at different hyper-parameters of DT with criterion=entropy, class weights= none.

 CLASS

Hyper-parameters Metrics DNS FTP ICMP P2P VOIP WWW

max_depth=1

max_leaf_nodes=2

criertion=entropy

class_weights=none

max_features=24

PER 0.00 0.00 0.00 72 0.00 75

REC 0.00 0.00 0.00 97 0.00 100

F1_Score 0.00 0.00 0.00 83 0.00 86

Accuracy 74.29 %

max_depth=6

max_leaf_nodes=7

criertion=entropy

class_weights=none

max_features=24

PER 100 100 100 100 100 100

REC 100 100 100 100 100 100

F1_Score 100 100 100 100 100 100

Accuracy 100 %

Table 6: Detailed results at different hyper-parameters of DT with criterion= gini , class weights= none.

 CLASS

Hyper-parameters Metrics DNS FTP ICMP P2P VOIP WWW

max_depth=1

max_leaf_nodes=2

criertion=gini

class_weights=none

max_features=24

max_depth=5

max_leaf_nodes=6

criertion=gini

class_weights=none

max_features=24

PER 0.00 0.00 0.00 72 0.00 75

REC 0.00 0.00 0.00 97 0.00 100

F1_Score 0.00 0.00 0.00 83 0.00 86

Accuracy 74.29 %

PER 100 100 100 97 100 100

REC 100 95 100 99 100 100

F1_Score 100 1000 100 100 100 100

Accuracy 99.53 %

Table 7: Detailed results at different hyper-parameters of DT with criterion=entropy, class weights= balanced.

 CLASS

 Percentile Metrics DNS FTP ICMP P2P VOIP WWW

 10%

PER 0.00 100 90 73 95 97

REC 0.00 98 93 96 100 94

F1_Score 0.00 99 92 83 97 96

Accuracy 91.23 %

 30%

PER 100 100 100 96 100 100

REC 100 88 100 100 100 100

F1_Score 100 94 100 98 100 100

Accuracy 99.41%

 50%

PER 100 100 100 96 100 100

REC 100 88 100 100 100 100

F1_Score 100 94 100 98 100 100

Accuracy 99.41 %

IJT’2024, Vol.04, Issue 01 10 of 19

IJT’2024, Vol.04, Issue 01 https://ijt.journals.ekb.eg

Table 8: Detailed results at different hyper-parameters of DT with criterion=gini, class weights= balanced.

 CLASS

Hyper-parameters Metrics DNS FTP ICMP P2P VOIP WWW

max_depth=1

max_leaf_nodes=2

criertion=gini

class_weights=balanced

max_features=24

PER 0.04 0.00 100 0.00 0.00 0.00

REC 100 0.00 100 0.00 0.00 0.00

F1_Score 0.08 0.00 100 0.00 0.00 0.00

Accuracy 14.22 %

max_depth=2

max_leaf_nodes=3

criertion=gini

class_weights=balanced

max_features=24

PER 0.04 100 100 0.00 0.00 0.00

REC 100 88 100 0.00 0.00 0.00

F1_Score 0.08 94 100 0.00 0.00 0.00

Accuracy 18.48 %

max_depth=4

max_leaf_nodes=5

criertion=gini

class_weights=balanced

max_features=24

PER 0.06 100 100 100 100 0.00

REC 100 88 100 97 100 0.00

F1_Score 0.11 94 100 99 100 0.00

Accuracy 40.40 %

max_depth=5

max_leaf_nodes=6

criertion=gini

class_weights=balanced

max_features=24

PER 78 100 100 100 100 100

REC 100 88 100 97 100 100

F1_Score 87 94 100 99 100 100

Accuracy 98.93 %

max_depth=7

max_leaf_nodes=8

criertion=gini

class_weights=balanced

max_features=24

PER 100 98 100 99 100 100

REC 100 98 100 99 100 100

F1_Score 100 98 100 99 100 100

Accuracy 99.76%

 CLASS

Hyper-parameters Metrics DNS FTP ICMP P2P VOIP WWW

max_depth=1

max_leaf_nodes=2

criertion=entropy

class_weights=balanced

max_features=24

PER 0.00 0.00 54 0.00 0.08 0.00

REC 0.00 0.00 100 0.00 100 0.00

F1_Score 0.00 0.00 70 0.00 0.14 0.00

Accuracy 16.71 %

max_depth=6

max_leaf_nodes=7

criertion=entropy

class_weights=balanced

max_features=24

PER 100 100 100 100 100 100

REC 100 100 100 100 100 100

F1_Score 100 100 100 100 100 100

Accuracy 100 %

IJT’2024, Vol.04, Issue 01 11 of 19

IJT’2024, Vol.04, Issue 01 https://ijt.journals.ekb.eg

 (a)

 (b)

 (c)

 (d)

 (e)

 (f)

Figure 3: Confusion matrices without of the proposed model with different algorithms. (a) SVM, (b)R F , (c)DT

 (d) NB, (e) KNN, and (f) LR.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4: ROCs without of the proposed model with different algorithms (a) SVM, (b) R F , (c) DT

(d) NB, (e) KNN, and (f) LR.

IJT’2024, Vol.04, Issue 01 12 of 19

IJT’2024, Vol.04, Issue 01 https://ijt.journals.ekb.eg

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5: Confusion matrices with of the proposed model with different algorithms (a) SVM,(b) R F , (c) DT,

(d) NB, (e) KNN, and (f) LR.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 6: ROCs with of the proposed model with different algorithms (a) SVM,(b) R F , (c) DT,

(d) NB, (e) KNN, and (f) LR.

IJT’2024, Vol.04, Issue 01 13 of 19

IJT’2024, Vol.04, Issue 01 https://ijt.journals.ekb.eg

(a)

(b)

(c)

(d)

(e)

(f)

Figure 7: Confusion matrices of the DT(entropy-balanced) (a) , (b) , (c) , (d) , (e) and (f) .

(a)

(b)

(c)

(d)

(e)

(f)

Figure 8: R O Cs of the DT(entropy-balanced) (a) , (b) , (c) , (d) , (e) and (f) .

IJT’2024, Vol.04, Issue 01 14 of 19

IJT’2024, Vol.04, Issue 01 https://ijt.journals.ekb.eg

(a)

(b)

(c)

(d)

(e)

(f)

Figure 9: Confusion matrices of the DT(entropy-None) (a) , (b) , (c) , (d) , (e) and (f) .

(a)

(b)

(c)

(d)

(e)

(f)

Figure 10: R O Cs of the DT(entropy-None) (a) , (b) , (c) , (d) , (e) and (f) .

IJT’2024, Vol.04, Issue 01 15 of 19

IJT’2024, Vol.04, Issue 01 https://ijt.journals.ekb.eg

(a)

(b)

(c)

(d)

(e)

(f)

Figure 11: Confusion matrices of the DT(gini-none) (a) , (b) , (c) , (d) , (e) and (f) .

(a)

(b)

(c)

(d)

(e)

(f)

Figure 12: R O Cs of the DT(gini-none) (a) , (b) , (c) , (d) , (e) and (f) .

IJT’2024, Vol.04, Issue 01 16 of 19

IJT’2024, Vol.04, Issue 01 https://ijt.journals.ekb.eg

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 13: Confusion matrices of the DT(gini-balanced) (a),(b),(c),

 (d), (e), (f), (g)and(h)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 14: ROCs of the DT(gini-balanced) (a),(b), (c),(d) , (e) ,(f) ,(g) and (h)

IJT’2024, Vol.04, Issue 01 17 of 19

IJT’2024, Vol.04, Issue 01 https://ijt.journals.ekb.eg

Table 9. Comparative accuracy of the proposed model with other literature techniques.

Ref MLTechnique Features Selection Model Output Accuracy

Su et al. [10] 1D ,CNN,CNN-LSTM 11 flow features 6 applications 99%

Samaan et al. [11] LR,RF,DT 9 flow features 8 applications 98%

Awad et al. [12] MLMR framework
automatic by

algorithm
8 applications

98%

Van et al. [13] KNN,SVM,RF,LR 10 flow features 6 applications 99%

Aouedi et al. [14] KNN,SVM,RF,MLP,DT
automatic by

algorithm
10 applications

89%

Machoke et al. [15]
eXtreme Gradient Boosting

RF,KNN
11 flow features 8 applications

90%

Karmous et al. [16] KNN
automatic by

algorithm
10 applications

99%

Khairi et al. [17] SVM,DT 7 flow features 8 applications 99.2%

Gnanamonickam et al.

[18]
MLT

automatic by

algorithm
8 applications

95%

Dang et al. [19] DT,RF 22 flow features 4 applications 96%

proposed model
k-NN, SVM, DT, RF, NP and

LR
15 flow features 6 applications

99.8%

5. Conclusions

 In this paper, SDN traffic classification model was described. A dataset was subjected to

classification using six ML algorithms: KNN, LR, RF, DT, NB and SVM Classifier. the performance

was better with the feature selected DT classifier. It achieved a 99.6% accuracy rate and a 100% F1

score. A number of issues must be resolved in order to move on with the task. First, only a

straightforward topology was utilized to test the hypothesis, with the primary emphasis being placed

on the correctness of the ML models. Although accuracy is required, the networks in the actual world are

much more complicated, therefore accuracy is insufficient. A real-world network’s performance is also

directly impacted by other variables including scalability, availability, and others. Additionally, When

the number of attributes increases, the traffic patterns that the clustering algorithm found must be

improved while keeping the level of complexity manageable. Due to the fact that user behavior

patterns vary from network to network, this finding is also context-dependent. For instance, the quantity

of clusters in a dataset derived from a data center and a dataset derived from a sensor network might

differ. Our future work will examine more intricate models based on ensemble learning techniques, which

combine multiple learning algorithms to produce better predictive performance than could be obtained from

any one learning algorithm. This will broaden the corresponding ML studies and increase the accuracy of

detection and prediction while also improving performance evaluation metrics.

References

[1] A. Zarzoor, N. Al-Jamali, and I. Al-Saedi, ‘Traffic Classification of IoT Devices by Utilizing Spike Neural Network Learning

Approach’, J. Math. Model. Algorithms, vol. 10, pp. 639–646, May 2023, doi: 10.18280/mmep.100234.

[2] W.-J. Eom, Y.-J. Song, C.-H. Park, J.-K. Kim, G.-H. Kim, and Y.-Z. Cho, ‘Network Traffic Classification Using Ensemble

Learning in Software-Defined Networks’, in 2021 International Conference on Artificial Intelligence in Information and

Communication (ICAIIC), Apr. 2021, pp. 089–092. doi: 10.1109/ICAIIC51459.2021.9415187.

[3] D. Nunez-Agurto, W. Fuertes, L. Marrone, and M. Macas, ‘Machine Learning-Based Traffic Classification in Software-

Defined Networking: A Systematic Literature Review, Challenges, and Future Research Directions’, vol. 49, no. 4, 2022.

IJT’2024, Vol.04, Issue 01 18 of 19

IJT’2024, Vol.04, Issue 01 https://ijt.journals.ekb.eg

[4] A. M. Eldhai, M. Hamdan, S. Khan, M. Hamzah, and M. N. Marsono, ‘Traffic Classification based on Incremental Learning

Algorithms for the Software-Defined Networks’, in 2022 International Conference on Frontiers of Information Technology (FIT),

Dec. 2022, pp. 338–343. doi: 10.1109/FIT57066.2022.00068.

[5] A. Vulpe, C. Dobrin, A. Stefan, and A. Caranica, ‘AI/ML-based real-time classification of Software Defined Networking

traffic’, in Proceedings of the 18th International Conference on Availability, Reliability and Security, in ARES ’23. New York, NY,

USA: Association for Computing Machinery, Aug. 2023, pp. 1–7. doi: 10.1145/3600160.3605078.

[6] D. Nuñez-Agurto, W. Fuertes, L. Marrone, E. Benavides-Astudillo, and M. Vásquez-Bermúdez, ‘Traffic Classification

in Software-Defined Networking by Employing Deep Learning Techniques: A Systematic Literature Review’, in

Technologies and Innovation, R. Valencia-García, M. Bucaram-Leverone, J. Del Cioppo-Morstadt, N. Vera-Lucio, and P. H.

Centanaro-Quiroz, Eds., in Communications in Computer and Information Science. Cham: Springer Nature Switzerland,

2023, pp. 67–80. doi: 10.1007/978-3-031-45682-4_6.

[7] Ö. Tonkal and H. Polat, ‘Traffic Classification and Comparative Analysis with Machine Learning Algorithms in Software

Defined Networks’, Gazi Üniversitesi Fen Bilim. Derg. Part C Tasar. Ve Teknol., vol. 9, no. 1, pp. 71–83, Mar. 2021, doi:

10.29109/gujsc.869418.

[8] D. Kumar and J. Thakur, ‘Handling Security Issues in Software-defined Networks (SDNs) Using Machine Learning’, in

Computational Vision and Bio-Inspired Computing, S. Smys, J. M. R. S. Tavares, and V. E. Balas, Eds., in Advances in

Intelligent Systems and Computing. Singapore: Springer, 2022, pp. 263–277. doi: 10.1007/978-981-16-9573-5_20.

[9] V. Elagin, ‘Traffic Classification Model in Software-Defined Networks with Artificial Intelligence Elements’, Proc.

Telecommun. Univ., vol. 9, pp. 66–78, Nov. 2023, doi: 10.31854/1813-324X-2023-9-5-66-78.

[10] C. Su, Y. Liu, and X. Xie, ‘Fine-grained Traffic Classification Based on Improved Residual Convolutional Network in

Software Defined Networks’, IEEE Lat. Am. Trans., vol. 21, no. 4, pp. 565–572, Apr. 2023, doi: 10.1109/TLA.2023.10128928.

[11] S. S. Samaan and H. A. Jeiad, ‘Architecting a machine learning pipeline for online traffic classification in software defined

networking using spark’, IAES Int. J. Artif. Intell. IJ-AI, vol. 12, no. 2, p. 861, Jun. 2023, doi: 10.11591/ijai.v12.i2.pp861-873.

[12] M. K. Awad, M. H. H. Ahmed, A. F. Almutairi, and I. Ahmad, ‘Machine Learning-Based Multipath Routing for Software

Defined Networks’, J. Netw. Syst. Manag., vol. 29, no. 2, p. 18, Jan. 2021, doi: 10.1007/s10922-020-09583-4.

[13] J. van Staden and D. Brown, ‘An Evaluation of Machine Learning Methods for Classifying Bot Traffic in Software Defined

Networks’, in Proceedings of Third International Conference on Sustainable Expert Systems, S. Shakya, V. E. Balas, and W.

Haoxiang, Eds., in Lecture Notes in Networks and Systems. Singapore: Springer Nature, 2023, pp. 979–991. doi:

10.1007/978-981-19-7874-6_72.

[14] ‘Performance evaluation of feature selection and tree-based algorithms for traffic classification’. Accessed: Oct. 26, 2023.

[Online]. Available: https://ieeexplore.ieee.org/abstract/document/9473580/

[15] M. Machoke, J. Mbelwa, J. Agbinya, and A. E. Sam, ‘Performance Comparison of Ensemble Learning and Supervised

Algorithms in Classifying Multi-label Network Traffic Flow’, Eng. Technol. Appl. Sci. Res., vol. 12, no. 3, Art. no. 3, Jun. 2022,

doi: 10.48084/etasr.4852.

[16] N. Karmous, M. O.-E. Aoueileyine, M. Abdelkader, and N. Youssef, ‘Enhanced Machine Learning-Based SDN Controller

Framework for Securing IoT Networks’, in Advanced Information Networking and Applications, L. Barolli, Ed., in Lecture

Notes in Networks and Systems. Cham: Springer International Publishing, 2023, pp. 60–69. doi: 10.1007/978-3-031-28694-

0_6.

[17] M. H. H. Khairi et al., ‘Detection and Classification of Conflict Flows in SDN Using Machine Learning Algorithms’, IEEE

Access, vol. 9, pp. 76024–76037, 2021, doi: 10.1109/ACCESS.2021.3081629.

[18] A. A. S. Gnanamonickam and P. D. Dr. B.Paramasivan M.E., ‘Intelligent Traffic Classification Feature Engineering

Technique (ITCFFE) For SDN Networks Based On Neural Networks’, resmilitaris, vol. 13, no. 3, Art. no. 3, Mar. 2023.

[19] T. L. Dang and V. C. Do, ‘Fine-Grained Network Traffic Classification Using Machine Learning: Evaluation and

Comparison’, in Soft Computing: Biomedical and Related Applications, vol. 981, N. H. Phuong and V. Kreinovich, Eds., in

Studies in Computational Intelligence, vol. 981. , Cham: Springer International Publishing, 2021, pp. 151–162. doi:

10.1007/978-3-030-76620-7_13.

[20] P. K. Mondal, L. P. Aguirre Sanchez, E. Benedetto, Y. Shen, and M. Guo, ‘A dynamic network traffic classifier using

supervised ML for a Docker-based SDN network’, Connect. Sci., vol. 33, no. 3, pp. 693–718, Jul. 2021, doi:

10.1080/09540091.2020.1870437.

[21] G. Karn, B. Sapkota, and B. R. Dawadi, ‘Traffic Classification and Load Balancing in SDN Environment’, 2023.

[22] A. A. El-serwy, E. AbdElhalim, and M. A. Mohamed, ‘Network Slicing Based on Real-Time Traffic Classification in

Software Defined Network (SDN) using Machine Learning’, MEJ Mansoura Eng. J., vol. 47, no. 3, pp. 1–10, Sep. 2022, doi:

10.21608/bfemu.2022.261455.

[23] O. Belkadi, A. Vulpe, Y. Laaziz, and S. Halunga, ‘ML-Based Traffic Classification in an SDN-Enabled Cloud Environment’,

Electronics, vol. 12, no. 2, Art. no. 2, Jan. 2023, doi: 10.3390/electronics12020269.

[24] ‘SDN traffic’. Accessed: Oct. 26, 2023. [Online]. Available: https://kaggle.com/code/sherifmahgoub/sdn-traffic

IJT’2024, Vol.04, Issue 01 19 of 19

IJT’2024, Vol.04, Issue 01 https://ijt.journals.ekb.eg

[25] N. Ahmed et al., ‘Network Threat Detection Using Machine/Deep Learning in SDN-Based Platforms: A Comprehensive

Analysis of State-of-the-Art Solutions, Discussion, Challenges, and Future Research Direction’, Sensors, vol. 22, no. 20, Art.

no. 20, Jan. 2022, doi: 10.3390/s22207896.

[26] H. Qu, J. Jiang, J. Zhao, Y. Zhang, and J. Yang, ‘A novel method for network traffic classification based on robust SUPPORT

VECTOR MACHINE’, Trans. Emerg. Telecommun. Technol., vol. 31, no. 11, p. e4092, Nov. 2020, doi: 10.1002/ett.4092.

[27] J. Zhou, A. H. Gandomi, F. Chen, and A. Holzinger, ‘Evaluating the Quality of Machine Learning Explanations: A Survey

on Methods and Metrics’, Electronics, vol. 10, no. 5, p. 593, Mar. 2021, doi: 10.3390/electronics10050593.

